タグ「導関数」の検索結果

25ページ目:全552問中241問~250問を表示)
上智大学 私立 上智大学 2014年 第3問
$a$を$-1$でない実数とし,座標平面において,放物線
\[ C:y=(x^2-2x+1)+a(x^2-5x+6) \]
を考える.

(1)$C$は,$a$の値によらず$2$点$\mathrm{P}([ソ],\ [タ])$,$\mathrm{Q}([チ],\ [ツ])$を必ず通る.ただし,$[ソ]<[チ]$とする.
(2)点$\mathrm{P}$における$C$の接線を$\ell$,点$\mathrm{Q}$における$C$の接線を$\ell^\prime$とする.$\ell$と$\ell^\prime$の交点の座標は$\displaystyle \left( \frac{[テ]}{[ト]},\ \frac{[ナ]}{[ニ]}a+[ヌ] \right)$である.

(3)$C$の軸は$\displaystyle x=\frac{1}{2} \left( [ネ]+\frac{[ノ]}{a+[ハ]} \right)$である.

(4)$C$が$x$軸と異なる$2$点で交わるのは

$a<[ヒ]$ \ または \ $[フ]<a$ \quad (ただし$a \neq -1$)

のときである.
(5)$a=[フ]$のとき,$C$は点$\displaystyle \left( \frac{[ヘ]}{[ホ]},\ 0 \right)$で$x$軸と接する.
(6)$C$が$x$軸と$2$点$(\alpha,\ 0)$,$(\beta,\ 0)$(ただし$\alpha<\beta$)で交わるとき,$\displaystyle \beta-\alpha=\frac{2}{3} \sqrt{5}$となるのは,$a=[マ]$または$\displaystyle a=\frac{[ミ]}{[ム]}$のときである.ただし,$\displaystyle [マ]<\frac{[ミ]}{[ム]}$とする.$a=[マ]$のとき,$C$と$x$軸で囲まれた図形の面積は$\displaystyle \frac{[メ]}{[モ]} \sqrt{[ヤ]}$である.
南山大学 私立 南山大学 2014年 第2問
$a>0$とし,関数$f(x)=x^3-3ax^2+2a^3+2a+1$を考える.

(1)方程式$f^\prime(x)=0$の解を求めよ.
(2)$f(x)$の増減を調べ,極値を求めよ.
(3)$x \geqq -1$における$f(x)$の最小値$m$を求めよ.
(4)$a$が$a>0$の範囲を動くとき,$(3)$の$m$の最大値を求めよ.
松山大学 私立 松山大学 2014年 第4問
次の空所$[ア]$~$[ト]$を埋めよ.

関数$\displaystyle f(x)=x^3+\frac{1}{2}ax^2-6x-\frac{1}{2}b$がある.ただし,
\[ a=\int_0^1 f(t) \, dt \cdots\cdots ① \qquad b=\int_{-1}^1 f(t) \, dt \cdots\cdots ② \]
とする.

(1)関数$f(x)$の不定積分は
\[ \int f(t) \, dt=\frac{1}{[ア]}t^4+\frac{1}{[イ]}at^3-[ウ]t^2-\frac{1}{[エ]}bt+C \quad \text{($C$は積分定数)} \]
であり,式$①$,$②$より$a=-[オ]$,$\displaystyle b=-\frac{[カ]}{[キ]}$である.
(2)$y=f(x)$が表す曲線$A$において,$\displaystyle x=\frac{3}{2}$のときの接線$B$を$y=g(x)$とおくと,関数$f(x)$の導関数は
\[ f^\prime(x)=[ク]x^2-[ケ]x-[コ] \]
であるので,
\[ g(x)=-\frac{[サシ]}{[ス]}x-\frac{[セソ]}{[タ]} \]
である.
接点以外の,曲線$A$と接線$B$の交点は,$\displaystyle \left( -\frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right)$である.
東京都市大学 私立 東京都市大学 2014年 第4問
関数$\displaystyle f(x)=\frac{e^{2x}}{9x^2+2}$について,次の問に答えよ.ただし,必要ならば$\displaystyle \lim_{x \to \infty}f(x)=\infty$を用いてよい.

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)関数$y=f(x)$の増減,極値を調べてそのグラフをかけ.
(3)$k$を定数とするとき,$x$についての方程式$e^{2x}=k(9x^2+2)$の解の個数を求めよ.
東京都市大学 私立 東京都市大学 2014年 第2問
次の問に答えよ.

(1)定積分$\displaystyle \int_1^e x^5 \log x \, dx$の値を求めよ.
(2)$\displaystyle f(x)=\sum_{k=1}^n (x^k)^k$とする.微分係数$f^\prime(1)$を$n$で表せ.
(3)極限値$\displaystyle \lim_{x \to \infty} \frac{\sqrt{9x^2+x}-3x}{1-\displaystyle\frac{1}{x} \cos x}$を求めよ.
岡山県立大学 公立 岡山県立大学 2014年 第4問
$\displaystyle f(x)=\int_x^{x+1} t \cdot |t| \, dt$とする.以下の問いに答えよ.

(1)$f(0)$と$f(-1)$を求めよ.
(2)$f^\prime(x)$を求めよ.
(3)$f(x)$を求めよ.
(4)座標平面において曲線$y=f(x)$と直線$y=f(-1)$で囲まれる部分のうち,$-2 \leqq x \leqq -1$の範囲の面積を$S_1$,$-1 \leqq x \leqq 0$の範囲の面積を$S_2$,$0 \leqq x \leqq 1$の範囲の面積を$S_3$とする.$S_1$,$S_2$,$S_3$を求めよ.
首都大学東京 公立 首都大学東京 2014年 第2問
空間内の$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$について,どの$3$点も同一直線上にはないとする.また,正の実数$a,\ b$は$\sqrt{2}a<b<2a$を満たすとし,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=a$,$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=b$とする.以下の問いに答えなさい.

(1)三角形$\mathrm{OAB}$は鈍角三角形であることを示しなさい.
(2)線分$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$上(ただし,端点を除く)にそれぞれ点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$があり,三角形$\mathrm{A}^\prime \mathrm{B}^\prime \mathrm{C}^\prime$は正三角形であるとする.このとき,直線$\mathrm{AB}$と直線$\mathrm{A}^\prime \mathrm{B}^\prime$は平行であることを示しなさい.
大阪府立大学 公立 大阪府立大学 2014年 第5問
定数$c$は$1<c<\sqrt{2}$をみたすとし,$0 \leqq x<1$で定義された$2$つの関数
\[ f(x)=x+\sqrt{1-x^2},\quad g(x)=cf(x)-x \sqrt{1-x^2} \]
を考える.$g(x)$の導関数を$g^\prime(x)$と表す.

(1)$f(x)$の最大値と最小値を求めよ.また,それらを与える$x$の値も求めよ.
(2)$g^\prime(x)=h(x)(c-f(x))$をみたす関数$h(x)$を求めよ.
(3)$g(x)$の最大値を求めよ.ただし,最大値を与える$x$の値を求める必要はない.
九州歯科大学 公立 九州歯科大学 2014年 第1問
次の問いに答えよ.

(1)$\displaystyle 3-\sqrt{5}+\frac{m}{3-\sqrt{5}}=n$をみたす整数$m$と$n$の値を求めよ.
(2)$\displaystyle F(x)=\sum_{k=1}^{12} \{ \log (e^{2k}x^2+e^{-2k})-\log (e^{-2k}x^2+e^{2k}) \}$とおくとき,$\displaystyle \alpha=\lim_{x \to \infty} F(x)$と$\displaystyle \beta=\lim_{x \to 0} F(x)$の値を求めよ.ただし,$e$は自然対数の底である.
(3)$2$つの関数$f(x)$と$g(x)$が$f(0)=-6$,$g(0)=2$,$g(x)>0$,$g^\prime(x)=f^\prime(x)+4x+3$,$\displaystyle f^\prime(x)=\frac{f(x)g^\prime(x)}{g(x)}-2xg(x)$をみたすとき,$\displaystyle g(x)=\frac{ax}{x^2+4}+b$となる定数$a$と$b$を求めよ.ただし,$f^\prime(x)$と$g^\prime(x)$はそれぞれ$f(x)$と$g(x)$の導関数である.
札幌医科大学 公立 札幌医科大学 2014年 第4問
関数$f(x)$を$\displaystyle f(x)=\frac{1}{\sqrt{x^2+1}}$とする.

(1)関数$g(x)=\log (x+\sqrt{x^2+1})$の導関数を求めよ.
(2)二つの曲線$y=f(x)$と$y=1-f(x)$で囲まれる図形の面積を求めよ.
スポンサーリンク

「導関数」とは・・・

 まだこのタグの説明は執筆されていません。