タグ「導関数」の検索結果

24ページ目:全552問中231問~240問を表示)
藤田保健衛生大学 私立 藤田保健衛生大学 2014年 第4問
原点$\mathrm{O}$を中心とした半径$1$の円$C$がある.円$C$上の$1$点$\mathrm{A}(a_1,\ a_2)$,$a_i>0$,$i=1,\ 2$を考える.$\mathrm{OA}$が$x$軸となす角度を$\theta$とする.

(1)円$C^\prime$を中心$(b_1,\ b_2)$,$b_i>0$,$i=1,\ 2$,半径$1$の円とし,点$\mathrm{A}$と$(1,\ 0)$で円$C$と交わっているものとすると,$(b_1,\ b_2)=[$14$]$である.また円$C^\prime$の点$\mathrm{A}$における接線の方程式は$[$15$]$である.
(2)次に$\theta$を限りなく$0$に近づけていくとき,
\[ \theta,\ \sin \theta,\ \sqrt{2(1-\cos \theta)},\ 1-\cos \theta+\sin \theta \]
の値の大小関係が定まり,これらを小さい順に並べて,$a<b<c<d$とすると
\[ a=[$16$],\ b=[$17$],\ c=[$18$],\ d=[$19$] \]
であり,$\displaystyle \frac{d-a}{bc}$は$[$20$]$に近づく.
津田塾大学 私立 津田塾大学 2014年 第2問
次の問いに答えよ.

(1)関数$f(x)$が,すべての$x$に対して$f^{\prime\prime}(x) \leqq 0$を満たすとする.このとき,

$(*)$ \quad $x_1<x_2<x_3$に対して $\displaystyle \frac{f(x_2)-f(x_1)}{x_2-x_1} \geqq \frac{f(x_3)-f(x_2)}{x_3-x_2}$
が成立することを示せ.
(2)関数$f(x)$が$(*)$を満たすとする.このとき,$a<b$を満たす実数$a,\ b$と$0<t<1$を満たす$t$に対して,
\[ f((1-t)a+tb) \geqq (1-t)f(a)+tf(b) \]
が成立することを示せ.
神奈川大学 私立 神奈川大学 2014年 第3問
$\displaystyle f(x)=-\frac{1}{3}x^3+\frac{1}{2}x^2+2$とする.以下の問いに答えよ.

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$f(x)$の増減表をかき,極値を求めよ.
(3)$y=f^\prime(x)$のグラフと$x$軸で囲まれた部分の面積を$S_1$とする.$S_1$を求めよ.
(4)$0<k<1$とする.直線$y=kx$と$y=f^\prime(x)$のグラフで囲まれた部分の面積を$S_2$とする.$S_2$を$k$の式で表せ.
(5)$S_2$が$S_1$の$\displaystyle \frac{1}{8}$となるときの$k$の値を求めよ.
安田女子大学 私立 安田女子大学 2014年 第4問
図のように半径$2$の円$\mathrm{O}$と半径$5$の円$\mathrm{O}^\prime$があり,$\mathrm{OO}^\prime=6$である.円$\mathrm{O}$,$\mathrm{O}^\prime$の共通接線の接点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とするとき,次の問いに答えよ.
(図は省略)

(1)線分$\mathrm{AB}$の長さを求めよ.
(2)円$\mathrm{O}$と$\mathrm{O}^\prime$の交点を$\mathrm{S}$,$\mathrm{T}$とし,その延長と線分$\mathrm{AB}$の交点を$\mathrm{M}$とするとき,$\mathrm{MS} \cdot \mathrm{MT}$の値を求めよ.
(3)線分$\mathrm{ST}$の長さを求めよ.
九州産業大学 私立 九州産業大学 2014年 第5問
関数$f(x)=2x \sqrt{2+x^2}$について考える.

(1)導関数$f^\prime(x)=[ア]$である.
(2)第$2$次導関数$f^{\prime\prime}(x)=[イ]$であり,$x=[ウ]$のとき$f^{\prime\prime}(x)=0$となる.
(3)曲線$y=f(x)$と$x$軸,および直線$x=1$で囲まれた部分の面積は$[エ]$である.
(4)曲線$y=f(x)$と$x$軸,および直線$x=1$で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積は$[オ]$である.
獨協医科大学 私立 獨協医科大学 2014年 第5問
関数$f(x)=2x+\cos x$がある.$xy$平面上の曲線$y=f(x)$の$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の部分を$C$とし,$C$と直線$y=2x$,および直線$x+2y=2$で囲まれた領域を$D$とする.領域$D$を直線$y=2x$の周りに$1$回転してできる立体の体積を求めよう.
(図は省略)

$C$上の点$\mathrm{P}(t,\ f(t))$から直線$y=2x$に下ろした垂線と直線$y=2x$との交点を$\mathrm{Q}$とする.
線分$\mathrm{PQ}$の長さは
\[ \frac{|\cos t|}{\sqrt{[ア]}} \]
であり,点$\mathrm{Q}$の$x$座標は
\[ t+\frac{[イ]}{[ウ]} \cos t \]
である.これから,$\mathrm{OQ}=s$とおくと
\[ s=\sqrt{[エ]} \left( t+\frac{[イ]}{[ウ]} \cos t \right) \]
である.
$f^\prime(x)=2-\sin x>0$なので$f(x)$は増加する.よって,求める体積$V$は

$\displaystyle V=\int_{\frac{2 \sqrt{5}}{5}}^{\frac{\sqrt{5} \pi}{2}} \pi \mathrm{PQ}^2 \, ds$

$\displaystyle \quad\, =\frac{\sqrt{[オ]} \pi}{[カ]} \int_0^{\frac{\pi}{2}} \left( \cos^2 t-\frac{[キ]}{[ク]} \cos^2 t \sin t \right) \, dt$

$\displaystyle \quad\, =\frac{\sqrt{[ケ]} \pi^2}{[コサ]}-\frac{[シ] \sqrt{[ス]} \pi}{[セソ]}$
である.
東洋大学 私立 東洋大学 2014年 第4問
$C_1$を半径$1$の円とする.$H_1$を円$C_1$に内接する正六角形とし,正六角形$H_1$に内接する円を$C_2$とする.次の各問に答えよ.

(1)円$C_2$の半径は$\displaystyle \frac{\sqrt{[ア]}}{[イ]}$である.
(2)円$C_2$に内接する正六角形を$H_2$とする.この操作を繰り返し,$10$個の円$C_1,\ C_2,\ \cdots,\ C_{10}$を作る.このとき,$C_1,\ C_2,\ \cdots,\ C_{10}$の円周の長さの総和は
\[ \frac{\kakkofour{ウ}{エ}{オ}{カ}+[キ][ク][ケ] \sqrt{[コ]}}{256} \pi \]
である.
(3)円$C_1$に内接する正十二角形に,円$C^\prime$が内接している.このとき,$C^\prime$の半径は$\displaystyle \frac{[サ]+\sqrt{[シ]}}{2 \sqrt{2}}$である.
武庫川女子大学 私立 武庫川女子大学 2014年 第3問
次の空欄$[$39$]$~$[$60$]$にあてはまる数字を入れよ.ただし,空欄$[$41$]$,$[$44$]$,$[$47$]$,$[$51$]$には$+$または$-$の記号が入る.

(1)$\displaystyle \lim_{x \to 2} \frac{5x^2+5x-30}{x-2}=[$39$][$40$]$である.
(2)$2$次関数$y=f(x)$のグラフは原点と点$\displaystyle \left( 1,\ \frac{17}{4} \right)$を通る.また,$x=2$において傾き$8$の接線をもつ.このとき,$f(x)$の最小値は$\displaystyle [$41$] \frac{[$42$]}{[$43$]}$である.
(3)$2$次関数$f(x)=ax^2+bx+c$(ただし,$a,\ b,\ c$は定数)がある.すべての実数$x$について$3f(x)+4f^\prime(x)=-2x^2+5x+7$が常に成立するとき,
\[ a=[$44$] \frac{[$45$]}{[$46$]},\quad b=[$47$] \frac{[$48$][$49$]}{[$50$]},\quad c=[$51$] \frac{[$52$][$53$]}{[$54$][$55$]} \]
である.
(4)$2$つの関数$\displaystyle f(x)=x-\frac{3}{a}$および$\displaystyle g(x)=ax^2+7x+\frac{6}{a}$がある(ただし,$a$は正の定数).$xy$平面上の$4$つのグラフ$y=f(x)$,$y=g(x)$,$x=0$および$x=1$で囲まれる図形の面積は$a=[$56$] \sqrt{[$57$]}$のとき最小値$[$58$]+[$59$] \sqrt{[$60$]}$をとる.
上智大学 私立 上智大学 2014年 第2問
$xyz$空間において,$xy$平面に原点$\mathrm{O}(0,\ 0,\ 0)$で接し,中心が$\mathrm{C}(0,\ 0,\ 1)$であるような球面を$S$とする.点$\mathrm{P}(2 \sqrt{3},\ 0,\ 3)$に点光源をおくとき,$xy$平面上にできる$S$の影$S^\prime$を考える.

(1)点$\mathrm{P}$から球面$S$に引いた接線の一つと球面との接点を$\mathrm{A}$とする.線分$\mathrm{PA}$の長さは$\sqrt{[キ]}$である.$\angle \mathrm{CPA}=\theta$とすると,$\displaystyle \sin \theta=\frac{[ク]}{[ケ]}$である.

(2)球面$S$上で光が当たる部分と影の部分との境界は,$\displaystyle \left( \frac{\sqrt{[コ]}}{[サ]},\ [シ],\ \frac{[ス]}{[セ]} \right)$を中心とし,半径が$\displaystyle \frac{\sqrt{[ソ]}}{[タ]}$の円である.
(3)影$S^\prime$は長軸の長さが$[チ] \sqrt{[ツ]}$の楕円の内部である.
上智大学 私立 上智大学 2014年 第1問
次の$[あ]$~$[お]$に当てはまるものを,下の選択肢から選べ.

(1)$\displaystyle x=-\frac{2}{3}$は$3x^2-13x-10=0$であるための$[あ]$
(2)$n$を自然数とする.$n^2$が$5$の倍数であることは,$n$が$5$の倍数であるための$[い]$
(3)$a,\ b$を自然数とする.$(a+b)^2$が奇数であることは,$ab$が偶数であるための$[う]$
(4)平面上の異なる$2$つの円$C$,$C^\prime$の半径をそれぞれ$r$,$r^\prime$とし,中心間の距離を$d$とする.ただし,$r<r^\prime$とする.このとき,$C$と$C^\prime$が共有点をもたないことは,$d>r+r^\prime$であるための$[え]$
(5)$\mathrm{AB}=8$,$\mathrm{BC}=5$,$\mathrm{CA}=7$の$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$の延長上に$\mathrm{CD}=4$となる点$\mathrm{D}$をとり,辺$\mathrm{AC}$上に$\mathrm{AE}=3$となる点$\mathrm{E}$をとる.このとき,辺$\mathrm{AB}$上の点$\mathrm{F}$に対して,$\mathrm{AF}=3$であることは,$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が一直線上にあるための$[お]$
選択肢:

\mon[$①$] 必要条件であるが十分条件ではない.
\mon[$②$] 十分条件であるが必要条件ではない.
\mon[$③$] 必要十分条件である.
\mon[$④$] 必要条件でも十分条件でもない.
スポンサーリンク

「導関数」とは・・・

 まだこのタグの説明は執筆されていません。