タグ「導関数」の検索結果

22ページ目:全552問中211問~220問を表示)
宇都宮大学 国立 宇都宮大学 2014年 第5問
$\alpha \neq 0$,$\beta \neq 0$として,関数$f_n(x) (n=1,\ 2,\ \cdots)$を
\[ \begin{array}{l}
f_1(x)=a_1 \sin \alpha x+b_1 \cos \alpha x \\
f_{n+1}(x)=\beta (f_n(x)+{f_n}^\prime(x)) \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
と定める.ただし,$a_1$,$b_1$,$\alpha$,$\beta$は実数である.このとき,次の問いに答えよ.

(1)$f_n(x)$は$f_n(x)=a_n \sin \alpha x+b_n \cos \alpha x$($a_n,\ b_n$は実数)の形で表されることを示せ.
(2)$(1)$における$a_n,\ b_n (n=1,\ 2,\ \cdots)$について,行列$P$を用いて
\[ \left( \begin{array}{c}
a_{n+1} \\
b_{n+1}
\end{array} \right)=P \left( \begin{array}{c}
a_{n} \\
b_{n}
\end{array} \right) \]
と表すとき,行列$P$を求めよ.
(3)$a_1=0$,$b_1=2$,$\alpha=\sqrt{3}$,$\displaystyle \beta=\frac{1}{2}$とするとき,$f_{99}(x)$を求めよ.
東京農工大学 国立 東京農工大学 2014年 第2問
$a,\ b$を実数とする.行列$A=\left( \begin{array}{cc}
4 & 3 \\
a & b
\end{array} \right)$,$B=\left( \begin{array}{cc}
a & b \\
b & -a
\end{array} \right)$が
\[ AB=\left( \begin{array}{cc}
10 & 5 \\
5 & 0
\end{array} \right) \]
を満たしている.次の問いに答えよ.

(1)$a,\ b$の値を求めよ.ただし答えのみでよい.
(2)$m,\ n$は実数で,$m \neq 0$,$n \neq 0$とする.座標平面上の$2$点$\mathrm{S}_1(m,\ 0)$,$\mathrm{S}_2(0,\ n)$をとり,行列$A$が表す$1$次変換によって$S_1$,$S_2$が移る点をそれぞれ${\mathrm{S}_1}^\prime$,${\mathrm{S}_2}^\prime$とする.$2$点${\mathrm{S}_1}^\prime$,${\mathrm{S}_2}^\prime$を通る直線が$2$点$\mathrm{S}_1$,$\mathrm{S}_2$を通る直線に一致するとき,$n$を$m$の式で表せ.
(3)$2$点$\mathrm{T}_1(-7,\ 0)$,$\mathrm{T}_2(0,\ 7)$を通る直線を$\ell$とする.行列$B$が表す$1$次変換によって$\mathrm{T}_1$,$\mathrm{T}_2$が移る点をそれぞれ${\mathrm{T}_1}^\prime$,${\mathrm{T}_2}^\prime$とし,$2$点${\mathrm{T}_1}^\prime$,${\mathrm{T}_2}^\prime$を通る直線を$\ell^\prime$とする.原点を中心とする半径$r$の円を$C$とする.$C$と$\ell$が異なる$2$点で交わり,かつ$C$と$\ell^\prime$も異なる$2$点で交わるとする.このような$r$の値の範囲を求めよ.
(4)$(3)$において,円$C$が$\ell$を切り取る線分の長さを$L$とし,円$C$が$\ell^\prime$を切り取る線分の長さを$L^\prime$とする.このような$L,\ L^\prime$の中で,$L$が最も小さい自然数になるときの$L^\prime$の値を求めよ.
電気通信大学 国立 電気通信大学 2014年 第1問
関数$\displaystyle f(x)=\frac{e^x-2}{e^x+2}$について,以下の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)極限$\displaystyle \lim_{x \to \infty}f(x)$,$\displaystyle \lim_{x \to -\infty}f(x)$をそれぞれ求めよ.
(2)導関数$f^\prime(x)$および第$2$次導関数$f^{\prime\prime}(x)$を求めよ.
(3)曲線$y=f(x)$を$C$とするとき,$C$の変曲点の座標を求めよ.
(4)曲線$C$の変曲点における接線$\ell$の方程式を求めよ.
(5)曲線$C$,$y$軸および接線$\ell$で囲まれた図形の面積$S$を求めよ.
東京農工大学 国立 東京農工大学 2014年 第3問
$e$は自然対数の底とする.$\mathrm{O}$を原点とする座標平面に$3$点
\[ \mathrm{A}(e^{-\theta}+\sqrt{3},\ e^{-\theta}),\quad \mathrm{B}(\cos \theta,\ \sin \theta),\quad \mathrm{C}(\sqrt{3},\ 0) \]
がある.ただし,$\theta \geqq 0$とする.次の問いに答えよ.

(1)三角形$\mathrm{ABC}$の面積を$F(\theta)$とする.$F(\theta)$を求めよ.
(2)$F(\theta)$の導関数を$F^\prime(\theta)$とする.区間$0<\theta<2\pi$において$F^\prime(\theta)=0$となる$\theta$の値をすべて求めよ.
(3)$n$を自然数とする.区間$2(n-1) \pi \leqq \theta \leqq 2n\pi$における$F(\theta)$の最大値,最小値をそれぞれ$\alpha_n$,$\beta_n$とする.$\alpha_n$,$\beta_n$を求めよ.また最大値を与える$\theta$の値と最小値を与える$\theta$の値を求めよ.
(4)$(3)$で求めた$\alpha_n (n=1,\ 2,\ 3,\ \cdots)$に対して,$\displaystyle S=\sum_{n=1}^\infty \alpha_n$とおく.$S$の値を求めよ.
信州大学 国立 信州大学 2014年 第5問
関数$f(x)$は,$f^{\prime\prime}(x)<0$をみたすとする.$t \geqq 0$のとき,次の$(1)$,$(2)$の不等式が成り立つことを示せ.

(1)$f(0)+f^\prime(t)t \leqq f(t) \leqq f(0)+f^\prime(0)t$

(2)$\displaystyle \frac{f(0)t+f(t)t}{2} \leqq \int_0^t f(u) \, du \leqq f(0)t+\frac{f^\prime(0)}{2}t^2$
福島大学 国立 福島大学 2014年 第5問
$a,\ b$を正の定数とし,関数$y=f(x)$,$y=g(x)$を次のように定める.


$f(x)=2 \sqrt{x-a} \quad (x \geqq a)$

$\displaystyle g(x)=\frac{x^2}{4}+b \quad (x \geqq 0)$


$y=f(x)$のグラフを$C_1$,$y=g(x)$のグラフを$C_2$とし,$C_1$と$C_2$は$1$点$\mathrm{P}$において接している.すなわち,点$\mathrm{P}$は$C_1$,$C_2$上にあり,点$\mathrm{P}$におけるそれぞれの接線は一致する.

(1)関数$y=f(x)$の導関数を求めなさい.
(2)点$\mathrm{P}$の$x$座標を$t$とするとき,$a$および$b$を$t$を用いて表しなさい.
(3)$t$の値の範囲を求めなさい.
(4)$C_1$,$C_2$,$x$軸,$y$軸で囲まれた図形の面積$S$を$t$を用いて表しなさい.
(5)$S$の最大値と,そのときの$t$の値を求めなさい.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

数直線上の座標$1,\ 2,\ 3$で表される位置に置かれた点に対する次の操作$\mathrm{T}$を考える.
\begin{screen}
操作$\mathrm{T}$

\mon[$(\mathrm{a})$] 点が$1$または$2$の位置に置かれている場合は確率$\displaystyle \frac{3}{4}$でそのままにしておき,確率$\displaystyle \frac{1}{4}$で正の方向へ$1$だけ動かす.
\mon[$(\mathrm{b})$] 点が$3$の位置に置かれている場合は確率$\displaystyle \frac{3}{4}$でそのままにしておき,確率$\displaystyle \frac{1}{4}$で負の方向へ$1$だけ動かす.

\end{screen}
以下,$n$を自然数とする.


(1)$1$の位置に置かれている点$\mathrm{A}$に対し,操作$\mathrm{T}$を$n$回繰り返し行った時点で,点$\mathrm{A}$が$1$の位置に置かれている確率を$p_n$,$2$の位置に置かれている確率を$q_n$とすると,$p_n=[あ]$,$q_n=[い]$である.
(2)$2$の位置に置かれている点$\mathrm{B}$に対し,操作$\mathrm{T}$を$n$回繰り返し行った時点で,点$\mathrm{B}$が$2$の位置に置かれている確率を$q_n^\prime$とすると,$q_n^\prime=[う]$である.
(3)$2$点$\mathrm{C}$,$\mathrm{D}$がともに$1$の位置に置かれているとする.はじめに$\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を繰り返し行うとし,点$\mathrm{C}$が$1$の位置を離れた次の回からは$\mathrm{O}$君が加わって,$\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を繰り返し行うのと同時に,$\mathrm{K}$君とは独立に,$\mathrm{O}$君が点$\mathrm{D}$に対し操作$\mathrm{T}$を繰り返し行うとする.

$(3-1)$ $\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を$n$回繰り返し行った時点で,$2$点$\mathrm{C}$,$\mathrm{D}$がともに$2$の位置に置かれている確率を$r_n$とすると$r_1=0$,$r_2=[え]$であり,一般に$n \geqq 2$に対して$r_n=[お]$である.
$(3-2)$ $\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を$n$回繰り返し行った時点で,$2$点$\mathrm{C}$,$\mathrm{D}$がどちらも$2$の位置に置かれていない確率を$s_n$とすると$s_1=[か]$である.また一般に$n \geqq 2$に対して$s_n-r_n=[き]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
座標空間内の$3$点$\mathrm{A}(1,\ 0,\ 1)$,$\mathrm{B}(0,\ 2,\ 3)$,$\mathrm{C}(0,\ 0,\ 3)$と原点$\mathrm{O}$を頂点とする四面体$\mathrm{OABC}$について考える.

四面体$\mathrm{OABC}$を平面$z=t (0<t<3)$で切ったときの切り口の面積を$f(t)$とする.$0<t \leqq 1$のとき$f(t)=[ソ]$である.また,$1<t<3$のとき平面$z=t$と辺$\mathrm{AB}$の交点の座標は$[タ]$となり,$f(t)=[チ]$となる.
次に,四面体$\mathrm{OABC}$において,$2$つの平面$z=t$と$z=t+2 (0<t<1)$の間にはさまれた部分の体積を$g(t)$とすると,その導関数は$g^\prime(t)=[ツ]$であり,$g(t)$は$t=[テ]$のとき最大値をとる.
慶應義塾大学 私立 慶應義塾大学 2014年 第5問
以下の$[ト]$,$[ナ]$,$[ニ]$には三角関数は$\sin \theta$と$\cos \theta$のみを用いて記入し,$[ヌ]$には$x$の式,$[ネ]$には$y$の式を記入すること.

座標平面上の$2$点$(1,\ 0)$,$(0,\ 1)$を結ぶ曲線$C$が媒介変数$\theta$を用いて
\[ \left\{ \begin{array}{l}
x=f(\theta) \\
y=g(\theta)
\end{array} \right. \quad \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right) \]
と表されているとする.いま,関数$f(\theta)$,$g(\theta)$は$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$で連続,$\displaystyle 0<\theta<\frac{\pi}{2}$で微分可能かつ$f^\prime(\theta) \neq 0$であるとする.また$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,点$(f(\theta),\ g(\theta))$における曲線$C$の接線の傾きが$-\tan \theta$であり,この接線から$x$軸,$y$軸で切り取られる線分の長さがつねに一定で$1$であるとする.
まず,この曲線$C$の方程式を求めたい.$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,曲線$C$上の点$(f(\theta),\ g(\theta))$における接線を$y=-(\tan \theta)x+h(\theta)$と表すと$h(\theta)=[ト]$となる.この接線の傾きが$\displaystyle \frac{g^\prime(\theta)}{f^\prime(\theta)}$となることより,$f(\theta)=[ナ]$,$g(\theta)=[ニ]$となる.したがって,曲線$C$を$x,\ y$の方程式で表すと
\[ [ヌ]+[ネ]=1 \quad (x \geqq 0,\ y \geqq 0) \]
となる.
次に,点$(f(\theta),\ g(\theta))$における曲線$C$の法線を$\ell(\theta)$とする.$\displaystyle \theta \neq \frac{\pi}{4}$のとき$\ell(\theta)$と$\displaystyle \ell \left( \frac{\pi}{4} \right)$との交点の$x$座標を$X(\theta)$とすると,$\displaystyle \lim_{\theta \to \frac{\pi}{4}} X(\theta)=[ノ]$となる.
また,曲線$C$と$x$軸,$y$軸で囲まれた部分の面積は$[ハ]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
$a,\ b,\ c$を実数とする.$x$の関数$F(x)$を
\[ F(x)=\frac{1}{3}x^3+ax^2+bx+c \]
と定め,
\[ f(x)=F^\prime(x) \]
とおく.関数$F(x)$は$x=\alpha$において極大に,$x=\beta$において極小になるとする.点$(\alpha,\ f(\alpha))$,$(\beta,\ f(\beta))$における曲線$y=f(x)$の接線をそれぞれ$\ell_\alpha$,$\ell_\beta$とする.

(1)直線$\ell_\alpha$と$\ell_\beta$の交点の座標は
\[ \left( \frac{[$15$]}{[$16$]} \alpha+\frac{[$17$]}{[$18$]} \beta,\ \frac{[$19$][$20$]}{[$21$]} (\beta-\alpha)^2 \right) \]
である.
(2)曲線$y=f(x)$と直線$\ell_\alpha$,$\ell_\beta$とで囲まれた図形の面積を$S$とすると,
\[ S=\frac{[$22$]}{[$23$][$24$]} (\beta-\alpha)^3 \]
である.必要なら次の公式を使ってよい.$r$を実数とすると
\[ \int (x+r)^2 \, dx=\frac{1}{3}(x+r)^3+C \quad (C \text{は定数}) \]
(3)実数$a,\ b$が不等式
\[ 0 \leqq a \leqq 2,\quad 2a-4 \leqq b \leqq 2a-2 \]
をみたす範囲を動くとき,$S$の最大値は$\displaystyle \frac{[$25$][$26$]}{[$27$]}$,最小値は$\displaystyle \frac{[$28$][$29$]}{[$30$]}$である.
スポンサーリンク

「導関数」とは・・・

 まだこのタグの説明は執筆されていません。