タグ「導関数」の検索結果

21ページ目:全552問中201問~210問を表示)
九州工業大学 国立 九州工業大学 2014年 第3問
$\displaystyle f(x)=\frac{\sin x-x \cos x}{\displaystyle\frac{2}{\pi}-\cos x}$,$\displaystyle g(x)=\frac{1}{2}x+\frac{\pi}{4}$とする.$\displaystyle \frac{\pi}{2}<x<\pi$のとき,以下の問いに答えよ.

(1)$f^\prime(x)$を求めよ.
(2)$f^\prime(x)>0$を示せ.
(3)$\displaystyle \frac{\pi}{2}<f(x)<\pi$を示せ.
(4)$f(x)<g(x)$を示せ.
富山大学 国立 富山大学 2014年 第1問
自然数$n$に対して,$\displaystyle f_n(x)=\int_0^x \frac{dt}{(t^2+1)^n}$とおく.このとき,次の問いに答えよ.

(1)$f_1(1)$を求めよ.
(2)$\displaystyle g(x)=f_1 \left( \frac{1}{x} \right)$とおく.$g^\prime(x)$を求め,$x>0$のとき
\[ f_1(x)+g(x)=\frac{\pi}{2} \]
が成り立つことを示せ.
(3)$\displaystyle \lim_{x \to \infty}f_1(x)$を求めよ.
(4)部分積分法を用いて,
\[ f_n(x)=\frac{x}{(x^2+1)^n}+2nf_n(x)-2nf_{n+1}(x) \]
が成り立つことを示せ.
(5)$\displaystyle \lim_{x \to \infty} f_n(x)=\frac{\comb{2n-3}{n-1}}{{2}^{2n-2}} \pi (n \geqq 2)$であることを示せ.ただし,$\displaystyle \comb{m}{k}=\frac{m!}{(m-k)!k!}$とする.
防衛医科大学校 国立 防衛医科大学校 2014年 第4問
$\displaystyle y=f(x)=\tan x \left( -\frac{\pi}{2}<x<\frac{\pi}{2},\ -\infty<y<\infty \right)$の逆関数を$\displaystyle y=f^{-1}(x)=\tan^{-1}x \left( -\infty<x<\infty,\ -\frac{\pi}{2}<y<\frac{\pi}{2} \right)$とする.このとき,以下の問に答えよ.

(1)次の問に答えよ.

(i) $\displaystyle \tan^{-1} \frac{1}{2}+\tan^{-1} \frac{1}{3}$はいくらか.

(ii) $\displaystyle \tan^{-1} \frac{1}{2}+\tan^{-1} \frac{1}{3}=\tan^{-1} \frac{1}{4}+\tan^{-1} \frac{1}{x}$を満たす実数$x$を求めよ.

(2)次の問に答えよ.

(i) $y=f^{-1}(x)$のグラフの概形を描け.
(ii) $(ⅰ)$のグラフの点$\displaystyle \left( 1,\ \frac{\pi}{4} \right)$における接線を求めよ.
(iii) 導関数$(\tan^{-1}x)^\prime$を求めよ.

(3)不定積分$\displaystyle \int \frac{1}{x^2+x+1} \, dx$を求めよ.
富山大学 国立 富山大学 2014年 第2問
微分可能な関数$f(x)$と$2$つの定数$p,\ q$が次の条件を満たすとする.

「すべての実数$x,\ y$に対して,$f(x+y)=pf(x)+qf(y)$が成り立つ」
このとき,次の問いに答えよ.

(1)$f(0) \neq 0$とする.

(i) $p+q=1$であることを示せ.
(ii) $f(x)$は定数関数であることを示せ.

(2)$f(0)=0$で$f(x)$が定数関数でないとする.

(i) $p=1$であることを示せ.
(ii) $a=f^\prime(0)$とするとき,$f(x)$を$a$を用いて表せ.
室蘭工業大学 国立 室蘭工業大学 2014年 第1問
$a,\ b,\ c$を定数とし,$a \neq 0$とする.関数$f(x)$,$g(x)$をそれぞれ
\[ f(x)=ax^2+bx+c,\quad g(x)=f^\prime(x) \]
と定め,放物線$y=f(x)$および直線$y=g(x)$をそれぞれ$C$,$L$とする.$C$の軸は$x=1$であり,$C$と$L$はともに点$(2,\ 2)$を通る.

(1)$a,\ b,\ c$の値を求めよ.
(2)$C$を$y$軸方向に$d$だけ平行移動させた曲線を$D$とする.$D$は$L$と$2$点で交わり,その$2$点間の距離は$4 \sqrt{5}$である.この$2$点の座標,および$d$の値を求めよ.
(3)$L$と$D$で囲まれた部分の面積$S$を求めよ.
福井大学 国立 福井大学 2014年 第3問
関数$\displaystyle f(x)=\frac{x}{\sqrt{x^2+1}}$について,以下の問いに答えよ.

(1)関数$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)曲線$y=f(x)$上の点$(t,\ f(t))$における接線が点$\displaystyle \left( 0,\ \frac{1}{2 \sqrt{2}} \right)$を通るような$t$の値を求めよ.
(3)$t$を$(2)$で求めた値とする.曲線$y=f(x)$と$x$軸および直線$x=t$によって囲まれた図形を$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
山口大学 国立 山口大学 2014年 第4問
座標平面において,点$\mathrm{O}(0,\ 0)$,点$\mathrm{A}(1,\ 1)$がある.方程式$y=-ax+2a+2$が表す直線を$\ell$とするとき,次の問いに答えなさい.ただし,$a$は正の実数とする.

(1)直線$\ell$に関して点$\mathrm{A}$と対称な点を$\mathrm{A}^\prime$とする.$\mathrm{A}^\prime$の座標を求めなさい.
(2)点$\mathrm{P}$が直線$\ell$上を動くときの$\mathrm{OP}+\mathrm{PA}$の最小値を,$a$を用いて表しなさい.
(3)$(2)$で求めた$\mathrm{OP}+\mathrm{PA}$の最小値を$f(a)$とするとき,$f(a)$を最大にするような$a$の値を求めなさい.
茨城大学 国立 茨城大学 2014年 第1問
以下の各問に答えよ.

(1)$\displaystyle \frac{{(1+i)}^3}{-2+3i}=a+bi$を満たす実数$a,\ b$を求めよ.ただし,$i$は虚数単位である.
(2)$3$つの行列の積$\left( \begin{array}{cc}
2 & 1 \\
4 & 3
\end{array} \right) \left( \begin{array}{c}
1 \\
4
\end{array} \right) \left( \begin{array}{cc}
2 & 3
\end{array} \right)$を計算せよ.
(3)$f(x)={(x+4)}^{\frac{5}{6}}{(3x+2)}^{\frac{4}{3}}$とする.関数$f(x)$の$x=0$における微分係数$f^\prime(0)$を求めよ.
(4)極限$\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \cos \frac{k \pi}{3n}$を求めよ.
浜松医科大学 国立 浜松医科大学 2014年 第2問
関数$\displaystyle f(x)=\frac{3 \sqrt{3}}{\sin x}-\frac{1}{\cos x} \left( 0<|x|<\frac{\pi}{2} \right)$を考える.以下の問いに答えよ.

(1)$y=f(x)$の増減表を作成し,極値を求めよ.
(2)$f(x)$の第$2$次導関数$f^{\prime\prime}(x)$は,$3$次式$P(t)=t(2t^2-1)$を用いて,
\[ f^{\prime\prime}(x)=3 \sqrt{3} P \left( \frac{1}{\sin x} \right)-P \left( \frac{1}{\cos x} \right) \]
と表されることを示せ.また,$\displaystyle 0<x_1<x_2<\frac{\pi}{2}$のとき$f^{\prime\prime}(x_1)>f^{\prime\prime}(x_2)$となることを示せ.
(3)$k$を定数とするとき,方程式$f(x)=k$の異なる実数解は何個あるか.$k$の値によって分類せよ.
(4)$y=f(x)$の変曲点はただ$1$つ存在することを示せ.また,この変曲点が第何象限にあるか,調べよ.
山口大学 国立 山口大学 2014年 第3問
次の問いに答えなさい.

(1)$2$つの整数$a,\ b$が$1+\sqrt{2}=a+b \sqrt{2}$を満たすならば,$a=b=1$であることを示しなさい.ただし,$\sqrt{2}$が無理数であることは示さなくてよい.
(2)$k$を自然数とする.$2$つの整数$a,\ b$が$(1+\sqrt{2})^{k+1}=a+b \sqrt{2}$を満たしているとき,$(1+\sqrt{2})^k=a^\prime+b^\prime \sqrt{2}$を満たす整数$a^\prime,\ b^\prime$を$a,\ b$を用いて表しなさい.
(3)すべての自然数$n$に対して,
命題「$2$つの整数$a,\ b$が$(1+\sqrt{2})^n=a+b \sqrt{2}$を満たしているならば,$(1-\sqrt{2})^n=a-b \sqrt{2}$である」
が成り立つことを数学的帰納法を用いて示しなさい.
スポンサーリンク

「導関数」とは・・・

 まだこのタグの説明は執筆されていません。