タグ「導関数」の検索結果

20ページ目:全552問中191問~200問を表示)
福島大学 国立 福島大学 2014年 第2問
$\displaystyle f(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}$とする.このとき,次の問いに答えなさい.

(1)$\displaystyle \lim_{x \to \infty} f(x),\ \lim_{x \to -\infty} f(x)$の値をそれぞれ求めなさい.
(2)$f(x)$の導関数$f^\prime(x)$を求めなさい.
(3)${f}^\prime(x)$を$f(x)$を用いた式で表しなさい.

(4)$\displaystyle G(a)=\int_{-a}^a \frac{1-\{f(x)\}^2}{2} \, dx$とするとき,$\displaystyle \lim_{a \to \infty} G(a)$の値を求めなさい.
滋賀医科大学 国立 滋賀医科大学 2014年 第3問
$\displaystyle f(x)=\frac{\sin x}{e^x},\ g(x)=\frac{\cos x}{e^x}$とする.

(1)関数$f(x)$の第$4$次までの導関数を求めよ.
(2)$0 \leqq x \leqq 2\pi$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$の概形をかけ.
(3)$x \geqq 0$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$の交点を$x$座標の小さい順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_n$,$\cdots$とするとき,$\mathrm{P}_n$の座標を求めよ.
(4)$\mathrm{P}_n$の$x$座標を$a_n$とする.$a_n \leqq x \leqq a_{n+1}$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$で囲まれた部分の面積を$S_n$とする.$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
三重大学 国立 三重大学 2014年 第4問
傾き正の直線$\ell$が,$2$曲線
\[ C:y=-x^2+6x,\quad C^\prime:y=3x^2-14x+28 \]
の両方に接している.以下の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\ell$と$C$および$x$軸の$3$つで囲まれる図形の面積を求めよ.
大阪教育大学 国立 大阪教育大学 2014年 第4問
以下の問に答えよ.

(1)$\displaystyle \sin \left( x+\frac{\pi}{4} \right)$を$\sin x$と$\cos x$を用いて表せ.
(2)$f(x)=\sin^3 x$の導関数を求めよ.
(3)$\displaystyle \int_0^{\frac{\pi}{6}} e^{3x} \sin^2 x \sin \left( x+\frac{\pi}{4} \right) \, dx$を求めよ.
滋賀医科大学 国立 滋賀医科大学 2014年 第4問
関数$f(x)$は導関数$f^\prime(x)$および第$2$次導関数$f^{\prime\prime}(x)$をもち,区間$0 \leqq x \leqq 1$において,
\[ f(x)>0,\quad \{f^\prime(x)\}^2 \leqq f(x)f^{\prime\prime}(x) \leqq 2 \{f^\prime(x)\}^2 \]
を満たしている.$f(0)=a$,$f(1)=b$とするとき,次の不等式を示せ.

(1)$\displaystyle f \left( \frac{1}{2} \right) \leqq \frac{a+b}{2}$

(2)$\displaystyle f \left( \frac{1}{3} \right) \leqq \sqrt[3]{a^2b}$

(3)$\displaystyle f \left( \frac{1}{4} \right) \geqq \frac{4ab}{a+3b}$

(4)$\displaystyle \int_0^1 f(x) \, dx \leqq \frac{1}{4}a+\frac{1}{2} \sqrt{ab}+\frac{1}{4}b$
山梨大学 国立 山梨大学 2014年 第1問
次の問いに答えよ.

(1)関数$f(x)=e^{1+\sin^2 x}$の導関数$f^\prime(x)$を求めよ.
(2)条件$a_1=1$,$a_2=2$,$a_{n+2}=3a_{n+1}-2a_n (n=1,\ 2,\ 3,\ \cdots)$で定められる数列$\{a_n\}$の一般項を求めよ.
(3)関数$\displaystyle f(x)=\frac{4x}{x^2+1}$の増減,極値,グラフの凹凸,変曲点および漸近線を調べ,曲線$y=f(x)$の概形をかけ.
大分大学 国立 大分大学 2014年 第3問
$a,\ b$を実数とし,$f(x)=(ax+b \cos x) \sin x$とおく.関数$f(x)$が
\[ f^\prime(0)=2,\quad \int_0^{\frac{\pi}{2}} f(x) \, dx=4 \]
をみたすとき,$a,\ b$の値を求めなさい.
九州工業大学 国立 九州工業大学 2014年 第3問
関数$s(t)$はつねに$s^\prime(t)>0$をみたし,$s(0)=0$とする.座標平面上を運動する点$\mathrm{P}$の座標$(x,\ y)$は,時刻$t$の関数として$x=s(t)$,$\displaystyle y=\frac{1}{2} \{s(t)\}^2$で与えられ,点$\mathrm{P}$の速度$\displaystyle \overrightarrow{v}=\left( \frac{dx}{dt},\ \frac{dy}{dt} \right)$は
\[ |\overrightarrow{v}|=\frac{1}{\sqrt{1+\{s(t)\}^2}} \]
をみたすとする.また,$\displaystyle \alpha=s \left( -\frac{4}{3} \right)$,$\displaystyle \beta=s \left( \frac{4}{3} \right)$とおく.次に答えよ.

(1)$\displaystyle \frac{dx}{dt}=f(x)$が成り立つように関数$f(x)$を定めよ.
(2)$\displaystyle \frac{4}{3}=\int_{-\frac{4}{3}}^0 \frac{1}{f(x)} \frac{dx}{dt} \, dt$,$\displaystyle \frac{4}{3}=\int_0^{\frac{4}{3}} \frac{1}{f(x)} \frac{dx}{dt} \, dt$を用いて,$\alpha$と$\beta$の値を求めよ.
(3)$\displaystyle \frac{d^2x}{dt^2}=g(x)$が成り立つように関数$g(x)$を定めよ.また,$\alpha \leqq x \leqq \beta$のとき$g(x)$が最大となる$x$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2014年 第4問
関数$f(x)=e^{\sqrt{2} \sin x}$を考える.次の問いに答えよ.

(1)$0 \leqq x \leqq 2\pi$において,関数$f(x)$の増減,極値,グラフの凹凸および変曲点を調べ,グラフの概形をかけ.
(2)$a$を実数とする.関数$f(x)$の導関数を$f^\prime(x)$とするとき,$x$の方程式$f^\prime(x)=a$の$0 \leqq x \leqq 2\pi$における実数解の個数を求めよ.
高知大学 国立 高知大学 2014年 第3問
関数$f(x)$を
\[ f(x)=\left\{ \begin{array}{ll}
\displaystyle\frac{1}{2}(x+1)x & (-1 \leqq x \leqq 0 \text{のとき}) \\
-\displaystyle\frac{1}{2}x(x-1) & (0<x \leqq 1 \text{のとき}) \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
とおくとき,次の問いに答えよ.

(1)$f(x)$は$x=0$で微分可能であることを示せ.
(2)関数$y=f(x)$のグラフをかけ.
(3)$y=f^\prime(x)$のグラフを$-1<x<1$の範囲でかき,$f^\prime(x)$が$x=0$で微分可能かどうかを理由をつけて述べよ.
(4)$y=f(x)$のグラフと$x$軸で囲まれた部分を,$x$軸のまわりに回転してできる立体の体積を求めよ.
スポンサーリンク

「導関数」とは・・・

 まだこのタグの説明は執筆されていません。