タグ「導関数」の検索結果

11ページ目:全552問中101問~110問を表示)
富山大学 国立 富山大学 2015年 第2問
関数$f(x)$は区間$[a,\ b]$で連続であり,区間$(a,\ b)$で第$2$次導関数$f^{\prime\prime}(x)$をもつとする.さらに,区間$(a,\ b)$で$f^{\prime\prime}(x)<0$が成り立つとする.このとき,次の問いに答えよ.

(1)$\displaystyle f(x)>\frac{1}{b-a} \{(b-x)f(a)+(x-a)f(b) \} (a<x<b)$が成り立つことを示せ.
(2)$c$が$a<c<b$を満たすならば
\[ f(x) \leqq f^\prime(c)(x-c)+f(c) \quad (a<x<b) \]
が成り立つことを示せ.
東京海洋大学 国立 東京海洋大学 2015年 第4問
座標平面上に曲線$C:y=x^4-2x^2+2x$がある.直線$\ell$は$C$に異なる$2$点で接している.このとき以下の問に答えよ.ただし${(x^4)}^\prime=4x^3$および$\displaystyle \int x^4 \, dx=\frac{x^5}{5}+D$($D$は積分定数)となることを用いてよい.

(1)$\ell$の方程式を求めよ.
(2)$C$と$\ell$で囲まれる図形の面積を求めよ.
(3)実数$a$に対して,点$(0,\ a)$を通る$C$の接線の本数を求めよ.
長岡技術科学大学 国立 長岡技術科学大学 2015年 第3問
関数$f(x)={(\log x)}^2$とおく.$t$を正の数とするとき,下の問いに答えなさい.

(1)$f^\prime(x)$を求めなさい.
(2)$x=t$における$y=f(x)$の接線の方程式を求めなさい.
(3)$(2)$で求めた接線と$y$軸との交点の$y$座標$g(t)$を求めなさい.
(4)$g(t)$の最小値と,その最小値を与える$t$の値を求めなさい.
室蘭工業大学 国立 室蘭工業大学 2015年 第1問
$a,\ b$を定数とし,関数$f(x)$を
\[ f(x)=x^3+ax+b \]
と定める.また,$f(-2)=-1$,$f^\prime(-2)=9$とする.

(1)$a,\ b$の値を求めよ.
(2)曲線$y=f(x)$上の点$\mathrm{A}(-2,\ -1)$における接線を$\ell$とする.また,点$\mathrm{A}$を通らない$\ell$に平行な$y=f(x)$の接線を$m$とする.このとき,$\ell$および$m$の方程式を求めよ.
(3)$(2)$で求めた$m$と曲線$y=f(x)$で囲まれた図形の面積を求めよ.
東京海洋大学 国立 東京海洋大学 2015年 第5問
関数$f(x)$はすべての実数$x$について
\[ f(x)=x+e^x \int_0^x e^{-t} f(t) \, dt \]
を満たす.

(1)$f(0)$の値を求めよ.
(2)$f^\prime(x)=2f(x)-x+1$が成り立つことを示せ.
(3)$g(x)=e^{-2x}f(x)$とする.$g^\prime(x)$を求めよ.
(4)$f(x)$を求めよ.
群馬大学 国立 群馬大学 2015年 第4問
すべての実数$x$において,関数$f(x)$は微分可能で,その導関数$f^\prime(x)$は連続とする.$f(x)$,$f^\prime(x)$が等式
\[ \int_0^x \sqrt{1+\left( f^\prime(t) \right)^2} \, dt=-e^{-x}+f(x) \]
を満たすとき,以下の問いに答えよ.

(1)$f(0)$を求めよ.
(2)$f^\prime(0)$を求めよ.
(3)$f(x)$を求めよ.
(4)$\displaystyle \int_0^1 x \sqrt{1+\left( f^\prime(x) \right)^2} \, dx$を求めよ.
群馬大学 国立 群馬大学 2015年 第5問
すべての実数$x$において,関数$f(x)$は微分可能で,その導関数$f^\prime(x)$は連続とする.$f(x)$,$f^\prime(x)$が等式
\[ \int_0^x \sqrt{1+\left( f^\prime(t) \right)^2} \, dt=-e^{-x}+f(x) \]
を満たすとき,以下の問いに答えよ.

(1)$f(0)$を求めよ.
(2)$f^\prime(0)$を求めよ.
(3)$f(x)$を求めよ.
(4)$\displaystyle \int_0^1 x \sqrt{1+\left( f^\prime(x) \right)^2} \, dx$を求めよ.
群馬大学 国立 群馬大学 2015年 第5問
すべての実数$x$において,関数$f(x)$は微分可能で,その導関数$f^\prime(x)$は連続とする.$f(x)$,$f^\prime(x)$が等式
\[ \int_0^x \sqrt{1+\left( f^\prime(t) \right)^2} \, dt=-e^{-x}+f(x) \]
を満たすとき,以下の問いに答えよ.

(1)$f(x)$を求めよ.
(2)曲線$y=f(x)$と直線$x=1$,および$x$軸,$y$軸で囲まれた部分を,$y$軸の周りに$1$回転させてできる立体の体積を求めよ.
山梨大学 国立 山梨大学 2015年 第4問
$\triangle \mathrm{OAB}$において,$\mathrm{OA}=a$,$\mathrm{OB}=b$,$\mathrm{AB}=1$とする.点$\mathrm{A}^\prime$および点$\mathrm{B}^\prime$をそれぞれ$\displaystyle \overrightarrow{\mathrm{AA}^\prime}=\frac{1}{a} \overrightarrow{\mathrm{OA}}$および$\displaystyle \overrightarrow{\mathrm{BB}^\prime}=\frac{1}{b} \overrightarrow{\mathrm{OB}}$となるようにとる.また,線分$\mathrm{AB}$を$t:(1-t)$に内分する点を$\mathrm{C}$とし,$\angle \mathrm{BAA}^\prime$の$2$等分線と$\angle \mathrm{ABB}^\prime$の$2$等分線の交点を$\mathrm{D}$とする.

(1)$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{OC}}$を$a,\ b,\ t$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OD}}$をベクトル$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(3)$3$点$\mathrm{O}$,$\mathrm{C}$,$\mathrm{D}$が一直線上にあるとき,$t$の値を求めよ.
名古屋大学 国立 名古屋大学 2015年 第1問
次の問に答えよ.

(1)関数$f(x)=x^{-2}2^x (x \neq 0)$について,$f^\prime(x)>0$となるための$x$に関する条件を求めよ.
(2)方程式$2^x=x^2$は相異なる$3$個の実数解をもつことを示せ.
(3)方程式$2^x=x^2$の解で有理数であるものをすべて求めよ.
スポンサーリンク

「導関数」とは・・・

 まだこのタグの説明は執筆されていません。