タグ「対称」の検索結果

8ページ目:全105問中71問~80問を表示)
福井大学 国立 福井大学 2012年 第1問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=\sqrt{2}$,$\mathrm{OC}=1$であり,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{AOC}=\frac{\pi}{3}$,$\displaystyle \angle \mathrm{BOC}=\frac{\pi}{4}$であるとする.また,3点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$,平面$\alpha$に関して$\mathrm{C}$と対称な点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OH}},\ \overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)四面体$\mathrm{OABC}$の体積を求めよ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,面$\mathrm{OAB}$上の点$\mathrm{P}$で$\mathrm{CP}+\mathrm{PG}$を最小にする点を$\mathrm{P}_0$とする.このとき,$\overrightarrow{\mathrm{OP}}_0$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表し,$\mathrm{CP}_0+\mathrm{P}_0 \mathrm{G}$の値を求めよ.
福井大学 国立 福井大学 2012年 第3問
曲線$C:y=e^{-x}$上の点$\mathrm{A}(a,\ e^{-a})$における$C$の法線$m$と直線$\ell_1:x=a$に関して,以下の問いに答えよ.

(1)$\ell_1$と$m$のなす角を$\theta$とするとき,$\tan \theta$を$a$を用いて表せ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(2)$m$に関して$\ell_1$と対称な直線を$\ell_2$とするとき,$\ell_2$の方程式を$a$を用いて表せ.
(3)$\ell_2$と$y$軸の交点を$\mathrm{P}$とおく.$a$が実数全体を動くとき,$\mathrm{P}$の$y$座標の最大値とそのときの$a$の値を求めよ.
(4)$a$を(3)で求めた値とするとき,曲線$C$,$y$軸および線分$\mathrm{AP}$で囲まれた部分を,$y$軸の周りに1回転させてできる立体の体積を求めよ.
東京海洋大学 国立 東京海洋大学 2012年 第2問
$a$を正の定数とする.放物線$C:y=(1-x)(x+a)$と$C$上の動点$\mathrm{P}(t,\ (1-t)(t+a))$について,次の問に答えよ.ただし,$0<t<1$とする.

(1)$x$軸に関して$\mathrm{P}$と対称な点を$\mathrm{Q}$,$xy$平面の原点を$\mathrm{O}$とし,放物線$C$と$y$軸および$2$つの線分$\mathrm{PQ}$,$\mathrm{OQ}$とで囲まれた図形の面積を$S$とするとき,$S$を$t$と$a$で表せ.
(2)$S$を最大にする$t$が$\displaystyle \frac{3}{4}<t<\frac{4}{5}$の範囲に存在することを示せ.
鳥取大学 国立 鳥取大学 2012年 第3問
点$\mathrm{A}(1,\ 2,\ 4)$を通り,ベクトル$\overrightarrow{n}=(-3,\ 1,\ 2)$に垂直な平面を$\alpha$とする.平面$\alpha$に関して同じ側に$2$点$\mathrm{P}(-2,\ 1,\ 7)$,$\mathrm{Q}(1,\ 3,\ 7)$がある.次の問いに答えよ.

(1)平面$\alpha$に関して点$\mathrm{P}$と対称な点$\mathrm{R}$の座標を求めよ.
(2)平面$\alpha$上の点で,$\mathrm{PS}+\mathrm{QS}$を最小にする点$\mathrm{S}$の座標とそのときの最小値を求めよ.
立教大学 私立 立教大学 2012年 第3問
座標平面上に2点A$(-1,\ 3)$,B$(5,\ 15)$と直線$\ell$が与えられており,2点A,Bは直線$\ell$に関して対称な位置にある.直線$\ell$が$y$軸と交わる点をCとし,線分ABの中点をMとする.線分MA上に,点Mと異なる点Pをとる.このとき次の問(1)~(4)に答えよ.

(1)点Mの座標と直線ABの方程式を求めよ.
(2)直線$\ell$の方程式を求めよ.
(3)点Pの$x$座標を$t$とする.$\angle \text{PCM}=\theta$とおくとき,$\cos \theta$を$t$を用いて表せ.
(4)直線$\ell$に関して,点Pと対称な点をQとする.三角形PCQが正三角形となるとき,$t$の値を求めよ.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$3$次の整式$F(x)$を$x^2-3x+2$で割ると,余りは$-3x-5$である.これより,$F(2)=[ア]$である.この$F(x)$を$x^2+3x+2$で割った余りが$3x+7$であるとき,$F(0)=[イ]$である.
(2)関数$\displaystyle f(x)=\frac{9 \cdot 10^x}{(1+10^x)^2}$を考える.$f(x) \geqq 2$となる$x$の値の範囲は$[ウ]$である.また,等式$\displaystyle f(-x)=\frac{a \cdot 10^{bx}}{(1+10^x)^2}$がすべての$x$について成り立つように定数$a,\ b$の値を定めると$(a,\ b)=[エ]$である.
(3)直線$\ell:y=7x+6a-5$と放物線$y=(x-a)^2-5$が異なる$2$点で交わるとき,定数$a$のとりうる値の範囲を求めると$[オ]$である.また,直線$y=2x+a$に関して,$\ell$と対称な直線の方程式を求めると$[カ]$である.
(4)$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$\displaystyle \frac{1}{\sin \theta}+\frac{1}{\cos \theta}=4 \sqrt{3}$のとき,$\sin \theta \cos \theta$の値を求めると$\sin \theta \cos \theta=[キ]$であり,$\sin^4 \theta+\cos^4 \theta$の値を求めると$\sin^4 \theta+\cos^4 \theta=[ク]$である.
南山大学 私立 南山大学 2012年 第2問
原点$\mathrm{O}$を中心とする半径$1$の円$C$と直線$\ell:y=x$がある.$C$上に点$\mathrm{P}$があり,$x$軸の正の部分を始線として,動径$\mathrm{OP}$の表す正の角を$\theta$とする.ただし,$\displaystyle \frac{1}{4}\pi<\theta<\pi$である.

(1)$\ell$に関して$\mathrm{P}$と対称な点$\mathrm{Q}$をとる.$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)$x$軸に関して$\mathrm{P}$と対称な点$\mathrm{R}$をとる.三角形$\mathrm{PQR}$の面積$S$を$\theta$を用いて表せ.
(3)$S$が最大になるときの$\theta$と$S$の値を求めよ.
日本女子大学 私立 日本女子大学 2012年 第1問
空間内に$3$点$\displaystyle \mathrm{A} \left( 0,\ \frac{1}{\sqrt{2}},\ \frac{1}{\sqrt{3}} \right)$,$\displaystyle \mathrm{B} \left( 1,\ 0,\ \frac{1}{\sqrt{3}} \right)$,$\displaystyle \mathrm{C} \left( 1,\ \frac{1}{\sqrt{2}},\ 0 \right)$がある.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面を$\alpha$とする.

(1)平面$\alpha$に関して原点$\mathrm{O}(0,\ 0,\ 0)$と対称な点$\mathrm{R}$の座標を求めよ.
(2)四面体$\mathrm{OABC}$の体積を求めよ.
金沢工業大学 私立 金沢工業大学 2012年 第5問
座標平面上において直線$y=2x$を$\ell$とし,この直線$\ell$に関して対称な$2$点$\mathrm{P}(x,\ y)$,$\mathrm{Q}(u,\ v)$をとる.

(1)直線$\mathrm{PQ}$は直線$\ell$に垂直であるから
\[ v-y=\frac{[アイ]}{[ウ]} (u-x) \qquad \cdots\cdots① \]
が成り立つ.
(2)点$\mathrm{P}$と点$\mathrm{Q}$の中点は直線$\ell$上にあるから
\[ v+y=[エ](u+x) \qquad \cdots\cdots② \]
が成り立つ.
(3)等式$①$と$②$より,$x,\ y$と$u,\ v$の間に関係
\[ \left( \begin{array}{c}
u \\
v
\end{array} \right)=\frac{1}{[オ]} \left( \begin{array}{cc}
[カキ] & [ク] \\
[ケ] & [コ]
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right) \qquad \cdots\cdots③ \]
が成り立つ.
(4)$1$次変換$③$を表す行列を$A$とすると,
\[ A^2=\left( \begin{array}{cc}
[サ] & [シ] \\
[ス] & [セ]
\end{array} \right),\quad A^{-1}=\frac{1}{[ソ]} \left( \begin{array}{cc}
[タチ] & [ツ] \\
[テ] & [ト]
\end{array} \right) \]
である.
日本獣医生命科学大学 私立 日本獣医生命科学大学 2012年 第4問
直線$y=2x-1$を$\ell$とする.$\ell$に関して点$(2,\ 1)$と対称な点の座標を求めよ.$\ell$に関して直線$y=-2x+5$と対称な直線の方程式を求めよ.
スポンサーリンク

「対称」とは・・・

 まだこのタグの説明は執筆されていません。