タグ「対称移動」の検索結果

3ページ目:全43問中21問~30問を表示)
北海学園大学 私立 北海学園大学 2013年 第1問
座標平面上の放物線$C_1$は,点$(1,\ 0)$で$x$軸に接し,点$(0,\ -a)$を通っている.また,$C_1$を$x$軸に関して対称移動した後に,$x$軸方向に$\displaystyle \frac{1}{a}-1$,$y$軸方向に$\displaystyle 1-\frac{1}{a}$だけ平行移動した放物線を$C_2$とする.ただし,$a>0$とする.

(1)$C_1$の方程式を求めよ.
(2)$C_2$の方程式を求めよ.
(3)直線$\displaystyle y=(a-1) \left( x-\frac{1}{2} \right)$が$C_2$と異なる$2$つの共有点をもつとき,$a$の値の範囲を求めよ.
北海学園大学 私立 北海学園大学 2013年 第1問
$2$次関数$f(x)=-x^2+(2a-3)x-a^2+3a+4$について,次の問いに答えよ.ただし,$a$は実数の定数とする.

(1)関数$f(x)$の最大値を求めよ.また,そのときの$x$の値を$a$を用いて表せ.
(2)$0 \leqq x \leqq 2$における関数$f(x)$の最小値が$4$であるような,$a$の値をすべて求めよ.
(3)$a$が(2)で求めたそれぞれの値をとるとき,$y=f(x)$のグラフを原点に関して対称移動した放物線の方程式を求めよ.ただし,$y=f(x)$の定義域は実数全体とする.
吉備国際大学 私立 吉備国際大学 2013年 第1問
次の問いに答えよ.

(1)$x^2+4xy+3y^2-2x-8y-3$を因数分解せよ.
(2)$1,\ 1,\ 1,\ 1,\ 2,\ 2,\ 3,\ 3$の$8$個の数字を用いて作ることができる$8$桁の整数の個数を求めよ.
(3)$\mathrm{AB}=4$,$\mathrm{BC}=5$,$\mathrm{CA}=7$のとき$\cos \angle \mathrm{B}$を求めよ.
(4)放物線$y=x^2+2x-1$を原点に関して,対称移動したときの放物線の式を求めよ.
(5)$2$次関数$y=-x^2+6x-9$の最大値,最小値があれば,それを求めなさい.
名古屋市立大学 公立 名古屋市立大学 2013年 第2問
逆行列をもつ行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$によって表される$1$次変換を考える.以下の問いに答えよ.

(1)この変換によって$xy$平面上の任意の$2$点$\mathrm{P}(x_1,\ y_1)$および$\mathrm{Q}(x_2,\ y_2)$がそれぞれ$\mathrm{P}^\prime ({x_1}^\prime,\ {y_1}^\prime)$および$\mathrm{Q}^\prime ({x_2}^\prime,\ {y_2}^\prime)$に移されるとき,$2$点間の距離が変換によって変化しない,つまり,$|\overrightarrow{\mathrm{PQ}}|^2=|\overrightarrow{\mathrm{P}^\prime \mathrm{Q}^\prime}|^2$であるための必要十分条件は,
\[ A^\mathrm{T}A=E \qquad \cdots\cdots (*) \]
であることを示せ.ただし,$A^\mathrm{T}$は$A$の行と列を入れ替えた行列要素をもつ行列,すなわち,
\[ A^\mathrm{T}=\left( \begin{array}{cc}
a & c \\
b & d
\end{array} \right) \]
である.また,$E$は単位行列である.
(2)原点のまわりの回転移動および$x$軸に関する対称移動の$1$次変換を,それぞれ,$f$および$g$とする.これらの$1$次変換を表す行列は,それぞれ,上の条件$(*)$を満たすことを確かめよ.
(3)$(2)$で考えた$1$次変換$f$および$g$を表す行列をそれぞれ$F$および$G$とし,$A=FGF^{-1}$で定義される行列$A$によって表される$1$次変換を考える.この変換によって直線$y=mx$上の任意の点がそれ自身に移されるとき,$A$を実数$m$を用いて表せ.ただし,$F^{-1}$は$F$の逆行列を表す.
(4)$(1)$で考えた点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$の座標を用いて,$S=x_1y_2-y_1x_2$および$S^{\prime}={x_1}^\prime {y_2}^\prime-{y_1}^\prime {x_2}^\prime$を定義する.$\mathrm{P}$,$\mathrm{Q}$から$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$への変換を表す行列が$(3)$で求めた$A$で与えられるとき,$S$と$S^\prime$の関係式を求めよ.
東北大学 国立 東北大学 2012年 第2問
$m$を実数とする.座標平面上で直線$y=x$に関する対称移動を表す$1$次変換を$f$とし,直線$y=mx$に関する対称移動を表す$1$次変換を$g$とする.以下の問いに答えよ.

(1)$1$次変換$g$を表す行列$A$を求めよ.
(2)合成関数$g \circ f$を表す行列$B$を求めよ.
(3)$B^3=\left(
\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}
\right)$となる$m$をすべて求めよ.
筑波大学 国立 筑波大学 2012年 第5問
以下の問いに答えよ.

(1)座標平面において原点のまわりに角$\theta \ (0<\theta<\pi)$だけ回転する移動を表す行列を$A$とする.$A$が等式$A^2-A+E=O$を満たすとき,$\theta$と$A$を求めよ.ただし,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right),\ O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$である.
(2)直線$y=\sqrt{3}x$に関する対称移動を表す行列$B$を求めよ.
(3)直線$y=kx$に関する対称移動を表す行列$C$とする.(1),(2)において求めた行列$A,\ B$に対して$BC=A$が成り立つとき,$k$を求めよ.
福井大学 国立 福井大学 2012年 第5問
$t$を1以上の実数とし,$f(x)=x^3+x^2-(t^2+t)x-t$とする.曲線$C:y=f(x)$を原点に関して対称移動して得られる曲線を$C_1$,$C$を$x$軸方向に1だけ平行移動して得られる曲線を$C_2$とする.また,$0 \leqq x \leqq 3$の範囲で,曲線$C_1,\ C_2,\ y$軸および直線$x=3$で囲まれた部分の面積を$S(t)$とするとき,以下の問いに答えよ.

(1)曲線$C_1$と$C_2$の交点の座標をすべて求めよ.
(2)$S(t)$を$t$を用いて表せ.
(3)$t$が$t \geqq 1$の範囲を動くとき,$S(t)$の最小値とそのときの$t$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2012年 第1問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$で表される移動により点$(x,\ y)$が点$(x^\prime,\ y^\prime)$に移るとき
\[ x^{\prime 2}+y^{\prime 2}=x^2+y^2 \]
が常に成り立つとする.

(1)$\left( \begin{array}{cc}
a & c \\
b & d
\end{array} \right) \left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$が成り立つことを示せ.

(2)行列$A^2$で表される移動が,原点に関する対称移動になるような行列$A$をすべて求めよ.
安田女子大学 私立 安田女子大学 2012年 第1問
次の問いに答えよ.

(1)$\sqrt{0.5^2-0.4^2}$を計算せよ.
(2)放物線$y=x^2+4x-1$を点$(1,\ 2)$に関して対称移動した放物線の方程式を求めよ.
(3)循環小数$2.0 \dot{3}$を分数で表せ.
(4)半径がそれぞれ$1$である$2$つの円が,一方の円周上に他方の円の中心があるような位置で重なっている.このとき,$2$つの円が重なっている部分の面積を求めよ.なお,円周率は$\pi$とする.
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第3問
関数$f(x)=x^2-x-2$によって,方程式$y=f(x)$と表される放物線$P$について,以下の問いに答えよ.

(1)放物線$P$上の点$(0,\ -2)$における,放物線$P$の接線の方程式を求めよ.
(2)放物線$P$を,原点に関して対称移動して得られる放物線の方程式を求めよ.
(3)(1)で求めた接線と,(2)で求めた放物線で囲まれた部分の面積を求めよ.
スポンサーリンク

「対称移動」とは・・・

 まだこのタグの説明は執筆されていません。