タグ「対数」の検索結果

99ページ目:全1047問中981問~990問を表示)
鳥取大学 国立 鳥取大学 2010年 第2問
定積分$\displaystyle I_n=\int_1^e (\log x)^n \, dx$について,次の問いに答えよ.ただし,$n$は自然数,$e$は自然対数の底とする.

(1)関数$f(x)=x(\log x)^n$の導関数を求めよ.
(2)$I_1$を求めよ.
(3)$I_n$と$I_{n+1}$の間に成立する関係式を求めよ.
(4)(3)で求めた関係式を用いて$I_4$を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2010年 第2問
$n$は2以上の自然数とする.1つの袋と1つの箱がある.袋には白玉3個と赤玉2個が入っており,箱には何も入っていない.次の操作を考える.

袋から玉を1個取り出し,白玉なら袋に戻し,赤玉なら箱に入れる.

この操作を$n$回繰り返す.$n$回目の操作の後,箱に入っている赤玉の個数を$X$とする.

(1)$k$を$n$以下の自然数とする.$k$回目の操作では赤玉を取り出し$k$回目以外の$n-1$回の操作では白玉を取り出す確率を$n$と$k$を用いて表せ.次に,$X=1$である確率$p_n$を求めよ.
(2)$X=2$である確率$q_n$を求めよ.
(3)$X$の期待値$E_n$を求めよ.また,極限$\displaystyle \lim_{n \to \infty}\frac{1}{n}\log (2-E_n)$を求めよ.
群馬大学 国立 群馬大学 2010年 第1問
次の問いに答えよ.

(1)$n$を自然数とし,$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.

\mon[(ア)] $\displaystyle 10^n < \left( \frac{5}{2} \right)^m$を満たす自然数$m$に対し,$5n<2m$を証明せよ.
\mon[(イ)] $\displaystyle \left( \frac{\sqrt{3}}{2} \right)^n<\frac{1}{5000}< \left( \frac{\sqrt{3}}{2} \right)^{n-1}$を満たす$n$を求めよ.

(2)実数$x,\ y$が連立不等式$4x-3y \geqq 1,\ -2x+6y \geqq 1$を満たすとき,$\log_8(4^x+8^y)$の最小値を求めよ.
群馬大学 国立 群馬大学 2010年 第1問
$n$を自然数とし,$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.

(1)$\displaystyle 10^n < \left( \frac{5}{2} \right)^m$を満たす自然数$m$に対し,$5n<2m$を証明せよ.
(2)$\displaystyle \left( \frac{\sqrt{3}}{2} \right)^n<\frac{1}{5000}< \left( \frac{\sqrt{3}}{2} \right)^{n-1}$を満たす$n$を求めよ.
群馬大学 国立 群馬大学 2010年 第1問
$n$を自然数とし,$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.

(1)$\displaystyle 10^n < \left( \frac{5}{2} \right)^m$を満たす自然数$m$に対し,$5n<2m$を証明せよ.
(2)$\displaystyle \left( \frac{\sqrt{3}}{2} \right)^n<\frac{1}{5000}< \left( \frac{\sqrt{3}}{2} \right)^{n-1}$を満たす$n$を求めよ.
群馬大学 国立 群馬大学 2010年 第1問
$n$を自然数とし,$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.

(1)$\displaystyle 10^n < \left( \frac{5}{2} \right)^m$を満たす自然数$m$に対し,$5n<2m$を証明せよ.
(2)$\displaystyle \left( \frac{\sqrt{3}}{2} \right)^n<\frac{1}{5000}< \left( \frac{\sqrt{3}}{2} \right)^{n-1}$を満たす$n$を求めよ.
防衛大学校 国立 防衛大学校 2010年 第5問
実数$x$に対して,$t=e^x+e^{-x}$とするとき,次の問に答えよ.

(1)$t$のとり得る値の最小値$m$を求めよ.
(2)$e^{2x}+e^{-2x}$を$t$の式で表せ.
(3)$t=e^x+e^{-x}$とおいて置換積分することにより,定積分$\displaystyle I=\int_{\log 2}^{\log 4}\frac{2e^x-2e^{-x}}{e^{2x}+e^{-2x}+1} \, dx$を求めよ.
(4)定数$a$に対して,$\displaystyle \int_{a}^{2a}\frac{2e^x-2e^{-x}}{e^{2x}+e^{-2x}+1} \, dx=\log \frac{3}{2}$となるとき,$e^a+e^{-a}$の値を求めよ.($a$の値は求めなくてよい.)
佐賀大学 国立 佐賀大学 2010年 第4問
$e$は自然対数の底,$a,\ b,\ c$は実数である.放物線$y=ax^2+b$を$C_1$とし,曲線$y=c \log x$を$C_2$とする.$C_1$と$C_2$が点P$(e,\ e)$で接しているとき,次の問いに答えよ.ここで,2つの曲線が点Pで接しているとは,ともに点Pを通り,かつ,その点における接線が一致していることである.

(1)$a,\ b,\ c$の値を求めよ.
(2)$C_1,\ C_2$および$x$軸,$y$軸とで囲まれた図形の面積を求めよ.
新潟大学 国立 新潟大学 2010年 第1問
次の問いに答えよ.

(1)不等式$4 \log_4 x \leqq \log_2 (4-x) +1$を解け.
(2)(1)で求めた$x$の範囲において,関数$y=9^x-4 \cdot 3^x+10$の最大値,最小値とそのときの$x$の値をそれぞれ求めよ.
山梨大学 国立 山梨大学 2010年 第1問
次の各問いに答えよ.

(1)$\log_2(x^2-2)-\log_2(2x+1) \leqq 0$を満たす実数$x$の値の範囲を求めよ.
(2)円$(x-2)^2+(y-3)^2=25$上に中心を持ち,$x$軸と$y$軸のいずれにも接する円の方程式をすべて求めよ.
(3)整式$P(x)$は$(x-1)^2$で割ると$5x-7$余り,$x-2$で割ると$10$余る.$P(x)$を$(x-1)^2(x-2)$で割ったときの余りを求めよ.
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。