タグ「対数」の検索結果

98ページ目:全1047問中971問~980問を表示)
長崎大学 国立 長崎大学 2010年 第4問
$a$を$a>1$を満たす定数とする.原点Oと点P$(1,\ 0)$を線分で結び,点Pと点Q$(a,\ \log a)$を曲線$y=\log x$で結ぶ.このようにして得られる曲線OPQを,$y$軸の周りに1回転させてできる立体の容器を考える.ただし,OPを含む部分を底面として,水平に置くものとする.次の問いに答えよ.

(1)この容器の容積$V$を$a$を用いて表せ.
(2)$m$を正の定数とする.この容器に,単位時間あたり$m$の水を一定の割合で注ぎ入れる.ただし,最初は水が全く入っていない状態とする.注ぎ始めてから時間$\displaystyle t \ \left( 0<t<\frac{V}{m} \right)$が経過したとき,底面から水面までの高さを$h$,水面の上昇する速度を$v$とする.$h$および$v$を$m,\ t$を用いて表せ.
宮崎大学 国立 宮崎大学 2010年 第4問
定積分
\[ I_n=\int_1^{\sqrt{e}} (\log x)^n \, dx \quad (n=1,\ 2,\ 3,\ \cdots) \]
について,次の各問に答えよ.

(1)$I_1$の値を求めよ.
(2)等式
\[ I_{n+1}=\sqrt{e} \left( \frac{1}{2} \right)^{n+1}-(n+1)I_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立つことを示せ.
(3)すべての自然数$n$について,等式
\[ I_n=(-1)^{n-1}n!+\sqrt{e}\sum_{m=0}^n (-1)^{n-m}\frac{n!}{m!}\left( \frac{1}{2} \right)^m \]
が成り立つことを,数学的帰納法を用いて証明せよ.ただし,$0!=1$とする.
宮崎大学 国立 宮崎大学 2010年 第5問
定積分
\[ I_n=\int_1^{\sqrt{e}} (\log x)^n \, dx \quad (n=1,\ 2,\ 3,\ \cdots) \]
について,次の各問に答えよ.

(1)$I_1$の値を求めよ.
(2)等式
\[ I_{n+1}=\sqrt{e} \left( \frac{1}{2} \right)^{n+1}-(n+1)I_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立つことを示せ.
(3)すべての自然数$n$について,等式
\[ I_n=(-1)^{n-1}n!+\sqrt{e}\sum_{m=0}^n (-1)^{n-m}\frac{n!}{m!}\left( \frac{1}{2} \right)^m \]
が成り立つことを,数学的帰納法を用いて証明せよ.ただし,$0!=1$とする.
佐賀大学 国立 佐賀大学 2010年 第1問
数列$\{a_n\}$が
\[ a_1=2,\quad a_{n+1}=2a_n+2 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定義されるとき,次の問いに答えよ.

(1)すべての自然数$n$に対して$a_{n+1}+b=2(a_n+b)$が成り立つような定数$b$を求めよ.
(2)一般項$a_n$を求めよ.
(3)$\displaystyle \frac{a_{2n}}{a_n} \geqq 10^{25}+1$をみたす最小の自然数$n$を求めよ.ただし,$\log_{10}2=0.3010$とする.
宮崎大学 国立 宮崎大学 2010年 第5問
次の各問に答えよ.
\vspace*{-6mm}
\begin{spacing}{2.2}

(1)次の関数を微分せよ.

(2)$y=e^{\sin x \cos x}$
(3)$\displaystyle y=\frac{x}{\sqrt{x^2+3}}$

(4)次の定積分の値を求めよ.

(5)$\displaystyle \int_{\log \pi}^{\log (2\pi)} e^x \sin (e^x) \, dx$
(6)$\displaystyle \int_0^1 e^{2x}(x+1) \, dx$
(7)$\displaystyle \int_0^\pi \sin x \cos (4x) \, dx$
(8)$\displaystyle \int_{-1}^0 \frac{x+1}{(x+2)(x+3)} \, dx$


\end{spacing}
\vspace*{-6mm}
熊本大学 国立 熊本大学 2010年 第4問
関数$\displaystyle f(x)=\int_x^{\frac{\pi}{4}-x} \log_4 (1+\tan t) \, dt \ \left( 0 \leqq x \leqq \frac{\pi}{8} \right)$について,以下の問いに答えよ.

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$\displaystyle f \left(\frac{\pi}{8} \right)$および$f(0)$の値を求めよ.
(3)条件$a_1=f(0),\ a_{n+1}=f(a_n) \ (n=1,\ 2,\ 3,\ \cdots)$によって定まる数列$\{a_n\}$の一般項$a_n$を求めよ.
名古屋工業大学 国立 名古屋工業大学 2010年 第4問
関数$\displaystyle f(x)=\frac{\log x}{x\sqrt{x}} \ (x>1)$に対して次の問いに答えよ.必要ならば,自然対数の底$e$の値は$2<e<3$であることを用いてよい.

(1)関数$f(x)$の増減を調べよ.
(2)曲線$y=f(x)$上の点P$(t,\ f(t))$における法線$\ell$の方程式を求めよ.
(3)点Pから$x$軸に下ろした垂線をPQとする.(2)で求めた法線$\ell$と$x$軸との交点をRとする.2点Q,Rの距離の最大値を求めよ.
福井大学 国立 福井大学 2010年 第4問
$k$を実数とする.Oを原点とする座標平面上の曲線$C:y=\log x -k$について,$C$の接線のうちOを通るものを$\ell_1$とし,その接点をPとする.以下の問いに答えよ.

(1)$\ell_1$の方程式を,$k$を用いて表せ.
(2)点Pにおける$C$の法線を$\ell_2$とし,$\ell_2$と$x$軸との交点の$x$座標を$\alpha$とおく.$\alpha$を$k$を用いて表せ.さらに,$\alpha$が最小となる$k$の値および$\alpha$の最小値を求めよ.
(3)$k$を(2)で求めた値とするとき,$C$と$\ell_1$および$x$軸で囲まれた図形の面積を求めよ.
愛媛大学 国立 愛媛大学 2010年 第5問
次の問いに答えよ.

(1)次の連立不等式を解け.
\[ \left\{
\begin{array}{l}
4x^2-4x-15<0 \\
x^2-2x \geqq 0
\end{array}
\right. \]
(2)$\displaystyle \frac{1}{x}+\frac{1}{y}=\frac{1}{3}$と$x \leqq y$の両方をみたす自然数の組$(x,\ y)$をすべて求めよ.
(3)方程式$\displaystyle \left( \log_2\sqrt{x}+\log_2x^2+\log_2\frac{1}{x} \right)^2=9$を解け.
(4)原点O,および3点A$(1,\ 0,\ 0)$,B$(0,\ 1,\ 0)$,C$(0,\ 0,\ 1)$がある.$0<s<1$に対して,線分AB,線分CAを$s:(1-s)$に内分する点を,それぞれP,Qとするとき,内積$\overrightarrow{\mathrm{OP}}\cdot \overrightarrow{\mathrm{OQ}}$を$s$を用いて表せ.
(5)等式$\displaystyle \int_0^{\frac{\pi}{4}} (x+a) \cos 2x \, dx=\frac{\pi}{8}$が成り立つとき,定数$a$の値を求めよ.
鳥取大学 国立 鳥取大学 2010年 第3問
定積分$\displaystyle I_n=\int_1^e (\log x)^n \, dx$について,次の問いに答えよ.ただし,$n$は自然数,$e$は自然対数の底とする.

(1)関数$f(x)=x(\log x)^n$の導関数を求めよ.
(2)$I_1$を求めよ.
(3)$I_n$と$I_{n+1}$の間に成立する関係式を求めよ.
(4)(3)で求めた関係式を用いて$I_4$を求めよ.
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。