タグ「対数」の検索結果

77ページ目:全1047問中761問~770問を表示)
関西学院大学 私立 関西学院大学 2012年 第1問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)実数$x$が不等式${(\log_2 x)}^2-\log_2 (4x)<0$を満たすとする.このとき,$\log_2 x$の範囲は
\[ [ア]<\log_2 x<[イ] \]
であるから,$x$の範囲は
\[ [ウ]<x<[エ] \]
である.
(2)数列$2,\ 3,\ 0,\ 9,\ -18,\ 63,\ -180,\ \cdots$を$\{a_n\}$とするとき,$\{a_n\}$の階差数列$\{b_n\}$は初項$[オ]$,公比$[カ]$の等比数列である.したがって,$\{a_n\}$の一般項は$a_n=[キ]$である.
(3)円$C$上に頂点をもつ正$8$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_8$の頂点から異なる$3$点を選び,それらを結んで三角形を作る.三角形の作り方は全部で$[ク]$通りある.これらの三角形のうち一辺が円$C$の直径になるものは$[ケ]$個ある.また二等辺三角形になるものは$[コ]$個ある.
千葉工業大学 私立 千葉工業大学 2012年 第2問
次の各問に答えよ.

(1)放物線$C:y=-x^2+4x+5$の頂点を$\mathrm{A}$とし,$C$と$x$軸の正の部分との交点を$\mathrm{B}$とする.このとき,$\mathrm{A}([ア],\ [イ])$であり,$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線$\ell$の方程式は$y=[ウエ]x+[オカ]$である.また,$C$の$0 \leqq x \leqq [ア]$の部分,$y$軸,および$\ell$で囲まれた図形の面積は$\displaystyle \frac{[キク]}{[ケ]}$である.
(2)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$を$a_1=-3$,$a_2=1$,
\[ a_{n+2}=-2a_{n+1}-4a_n \cdots\cdots① \]
で定める.このとき,
\[ a_{n+3}=-2a_{n+2}-4a_{n+1} \cdots\cdots② \]
であり,$②$に$①$を代入すると$a_{n+3}=[コ]a_n$となる.$b_n=a_{3n} (n=1,\ 2,\ 3,\ \cdots)$とおくと,数列$\{b_n\}$は初項$[サシ]$,公比$[ス]$の等比数列であり,$b_n$が初めて$7$桁の数になるのは$n=[セ]$のときである.ただし,$\log_{10}2=0.3010$とする.
大阪工業大学 私立 大阪工業大学 2012年 第1問
次の空所を埋めよ.

(1)$\log_{10}a=\log_{100}a^r$,$\log_{10}3+2 \log_{100}4-\log_{10}6=\log_{100}M$と表すとき,$r=[ア]$であり,$M=[イ]$である.
(2)$a$を正の実数とするとき,$x=i(a+i)^3$が実数となる$a$の値は$[ウ]$であり,このとき$x$の値は$[エ]$である.ただし,$i^2=-1$とする.
(3)初項から第$3$項までの和が$21$,初項から第$6$項までの和が$189$である等比数列の初項は$[オ]$であり,公比は$[カ]$である.
(4)点$\mathrm{A}(-1,\ 0)$を通る直線$\ell$が,中心$(1,\ 0)$,半径$1$の円と$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとき,$\mathrm{AP} \cdot \mathrm{AQ}=[キ]$である.さらに,$\mathrm{PQ}=1$のとき,直線$\ell$と$x$軸のなす角を$\theta$とすると,$\cos \theta=[ク]$である.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.
大阪工業大学 私立 大阪工業大学 2012年 第1問
次の空所を埋めよ.

(1)$\log_{10}a=\log_{100}a^r$,$\log_{10}3+2 \log_{100}4-\log_{10}6=\log_{100}M$と表すとき,$r=[ア]$であり,$M=[イ]$である.
(2)$a$を正の実数とするとき,$x=i(a+i)^3$が実数となる$a$の値は$[ウ]$であり,このとき$x$の値は$[エ]$である.ただし,$i^2=-1$とする.
(3)初項から第$3$項までの和が$21$,初項から第$6$項までの和が$189$である等比数列の初項は$[オ]$であり,公比は$[カ]$である.
(4)点$\mathrm{A}(-1,\ 0)$を通る直線$\ell$が,中心$(1,\ 0)$,半径$1$の円と$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとき,$\mathrm{AP} \cdot \mathrm{AQ}=[キ]$である.さらに,$\mathrm{PQ}=1$のとき,直線$\ell$と$x$軸のなす角を$\theta$とすると,$\cos \theta=[ク]$である.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.
中央大学 私立 中央大学 2012年 第2問
次の問題文の空欄にもっとも適する答えを解答群から選び,その記号をマークせよ.ただし,同じ記号を$2$度以上用いてもよい.

$a$を$1$より大きい実数とする.$xy$平面において,$x$軸,$y$軸,直線$x=1$と曲線$y=a^x$で囲まれる部分の面積を近似的に計算したい.$n$を自然数とし,$k=1,\ 2,\ \cdots,\ n$とする.また,$f(x)$は$0 \leqq x \leqq 1$において$f(x)>0$を満たす連続関数とする.

(1)$4$点$\displaystyle \left( \frac{k-1}{n},\ 0 \right)$,$\displaystyle \left( \frac{k}{n},\ 0 \right)$,$\displaystyle \left( \frac{k}{n},\ f \left( \frac{k}{n} \right) \right)$,$\displaystyle \left( \frac{k-1}{n},\ f \left( \frac{k-1}{n} \right) \right)$を頂点にもつ台形の面積を$M_k$とする.このとき$M_k=[キ]$となる.とくに$f(x)=a^x$であれば,面積の和$S_n=M_1+M_2+\cdots +M_n$は$[ク]$となる.ここで,極限$\displaystyle \lim_{x \to 0} \frac{a^x-1}{x}=[ケ]$を用いると,$\displaystyle \lim_{n \to \infty} S_n=[コ]$と計算される.
(2)以下では,曲線$y=f(x)$は下に凸とする.
$3$点$\displaystyle \left( \frac{k-1}{n},\ f \left( \frac{k-1}{n} \right) \right)$,$\displaystyle \left( \frac{2k-1}{2n},\ f \left( \frac{2k-1}{2n} \right) \right)$,$\displaystyle \left( \frac{k}{n},\ f \left( \frac{k}{n} \right) \right)$を通る放物線を
\[ C_k:y=\alpha \left( x-\frac{2k-1}{2n} \right)^2+\beta \left( x-\frac{2k-1}{2n} \right)+\gamma \quad (\alpha,\ \beta,\ \gamma \text{は定数}) \]
とおく.$x$軸,直線$\displaystyle x=\frac{k-1}{n}$,直線$\displaystyle x=\frac{k}{n}$と放物線$C_k$で囲まれる部分の面積を$N_k$とおくとき,$N_k=[サ]$となる.とくに$f(x)=a^x$であれば,面積の和$N_1+N_2+\cdots N_n$は$[シ]$となる.
\begin{itemize}
ケ,コの解答群
\[ \begin{array}{lllll}
\marua e^a \phantom{AA} & \marub e^{-a} \phantom{AA} & \maruc \displaystyle\frac{e^a}{a-1} \phantom{AA} & \marud (a-1)e^a \phantom{AA} & \marue (a-1)e^{-a} \\ \\
\maruf \log a & \marug \displaystyle\frac{1}{\log a} & \maruh \displaystyle\frac{\log a}{a-1} & \marui \displaystyle\frac{a-1}{\log a} & \maruj (a-1) \log a
\end{array} \]
キ,サの解答群

\mon[$\marua$] $\displaystyle \frac{1}{n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marub$] $\displaystyle \frac{1}{2n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\maruc$] $\displaystyle \frac{1}{3n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marud$] $\displaystyle \frac{1}{4n} \left\{ f \left( \frac{k-1}{n} \right)+2f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marue$] $\displaystyle \frac{1}{5n} \left\{ f \left( \frac{k-1}{n} \right)+3f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\maruf$] $\displaystyle \frac{1}{6n} \left\{ f \left( \frac{k-1}{n} \right)+4f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

ク,シの解答群
\[ \begin{array}{ll}
\marua \displaystyle\frac{(a^n-1) \sqrt{a}}{n(a-1)} \phantom{AA} & \marub \displaystyle\frac{a^{\frac{1}{2n}}(a-1)}{n(a^{\frac{1}{n}}-1)} \\ \\
\maruc \displaystyle\frac{(a+1)(a^n-1)}{n(a-1)} \phantom{AA} & \marud \displaystyle\frac{(a^{\frac{1}{n}}+1)(a-1)}{n(a^\frac{1}{n}-1)} \\ \\
\marue \displaystyle\frac{(a+1)(a^n-1)}{2n(a-1)} & \maruf \displaystyle\frac{(a^{\frac{1}{n}}+1)(a-1)}{2n(a^{\frac{1}{n}}-1)} \\ \\
\marug \displaystyle\frac{(a^{\frac{1}{n}}+a^{\frac{1}{2n}}+1)(a-1)}{n(a^\frac{1}{n}-1)} & \maruh \displaystyle\frac{(a^{\frac{1}{n}}+a^{\frac{1}{2n}}+1)(a-1)}{3n(a^\frac{1}{n}-1)} \\ \\
\marui \displaystyle\frac{(a^{\frac{1}{n}}+2a^{\frac{1}{2n}}+1)(a-1)}{4n(a^\frac{1}{n}-1)} & \maruj \displaystyle\frac{(a+3 \sqrt{a}+1)(a^n-1)}{5n(a-1)} \\ \\
\maruk \displaystyle\frac{(a^{\frac{1}{n}}+4a^{\frac{1}{2n}}+1)(a-1)}{6n(a^\frac{1}{n}-1)} &
\end{array} \]
\end{itemize}
大同大学 私立 大同大学 2012年 第5問
$\displaystyle f(x)=\sin 2x \log (2 \sin x) \left( \frac{\pi}{12} \leqq x \leqq \frac{3}{4} \pi \right)$とする.

(1)不定積分$\displaystyle \int t \log t \, dt$を求めよ.
(2)$2 \sin x=t$とおいて置換積分することにより,不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(3)$f(x) \geqq 0$をみたす$x$の範囲を求めよ.
(4)曲線$y=f(x)$と$x$軸で囲まれる部分の面積を求めよ.
杏林大学 私立 杏林大学 2012年 第3問
$\displaystyle 0<\theta<\frac{\pi}{3}$を満たす$\theta$と正の実数$p$に対して,$a_1=\log_4 (p \sin \theta)$,$a_2=\log_4 (\sin 2\theta)$,$a_3=\log_4 (\sin 3\theta)$とする.

(1)$a_1=a_2=a_3$となるのは,
\[ p=\frac{[ア]+\sqrt{[イ]}}{[ウ]},\quad \theta=\frac{[エ]}{[オ]} \pi \]
のときである.
(2)$3$つの数$a_1,\ a_2,\ a_3$がこの順に等差数列をなしているとする.このとき,
\[ p>\frac{[カ]}{[キ]} \]
となる.$p$をこの範囲で変化させたとき,$a_2+a_3$が最大となるのは,
\[ \cos^2 \theta=\frac{[クケ]+\sqrt{[コサシ]}}{[スセ]},\quad p=\frac{[ソ]+\sqrt{[コサシ]}}{[タチ]} \]
のときである.
(3)$p=2$で,$a_1,\ a_2,\ a_3$がこの順に等差数列をなしているとき,この数列の初項$a_1$および公差$d$は
\[ a_1=\frac{[ツ]}{[テ]},\quad d=\frac{[トナ]}{[ニ]} \]
である.この初項と公差を持つ等差数列$\{a_k\} (k=1,\ 2,\ 3,\ \cdots)$に対して,極限値
\[ \alpha=\lim_{n \to \infty} \sum_{k=1}^n 2^{2a_k} \]
を定義すると,$\alpha$は$2$次方程式
\[ x^2-[ヌ] x-[ネ]=0 \]
の解となっている.
安田女子大学 私立 安田女子大学 2012年 第1問
次の問いに答えよ.

(1)$\sqrt{5}$の小数部分を$a$とするとき,$\displaystyle a+\frac{1}{a}$の値を求めよ.
(2)$4<\sqrt{2x^2}<7$を満たす整数$x$をすべて求めよ.
(3)正三角形$\mathrm{ABC}$において$\angle \mathrm{ABC}=\theta$とするとき,$\sin \theta+\cos \theta+\tan \theta$の値を求めよ.
(4)対角線の差が$4 \, \mathrm{cm}$で,面積が$96 \, \mathrm{cm}^2$のひし形がある.このひし形の$1$辺の長さを求めよ.
(5)$5^{4 \log_5 2}$の値を求めよ.
九州産業大学 私立 九州産業大学 2012年 第1問
次の問いに答えよ.

(1)$3x^2+6x-2=0$の$2$つの解を$\alpha,\ \beta$とする.

(i) $\displaystyle \alpha^2\beta+\alpha\beta^2=\frac{[ア]}{[イ]}$である.

(ii) $\displaystyle (\alpha-\beta)^2=\frac{[ウエ]}{[オ]}$である.

(iii) $\alpha^3+\beta^3=[カキク]$である.

(2)平面上の$3$点$(-1,\ 9)$,$(0,\ 3)$,$(2,\ 3)$を通る放物線の方程式は$y=[ケ]x^2-[コ]x+[サ]$である.
(3)$\displaystyle f(x)=(\log_3 27x)(\log_3 \frac{x}{3})=(\log_3 x)^2+[シ] \log_3 x-[ス]$である.$f(x)$は$\displaystyle x=\frac{[セ]}{[ソ]}$で最小値$[タチ]$をとる.
(4)$7$個の小石を$3$人の子供$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に配る.このとき,$1$個ももらえない子供はいないとする.また,小石は互いに区別されないものとする.

(i) 小石の配り方は$[ツテ]$通りである.
(ii) 子供$\mathrm{A}$にちょうど$3$個の小石が配られる確率は$\displaystyle \frac{[ト]}{[ナ]}$である.
愛知学院大学 私立 愛知学院大学 2012年 第1問
次の空欄を埋めなさい.

(1)不等式$|x^2-4x-5|<x+1$を満たす$x$の範囲は$[ア]$である.
(2)不等式$-2<\log_{0.1}x<2$を満たす$x$の範囲は$[イ]$である.
(3)$4$次方程式$x^4+3x^2+4=0$の解は$[ウ]$である.
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。