タグ「対数」の検索結果

66ページ目:全1047問中651問~660問を表示)
琉球大学 国立 琉球大学 2012年 第1問
次の問に答えよ.

(1)次の数列の一般項を求めよ.
\[ 1,\ 5,\ 11,\ 19,\ 29,\ 41,\ \cdots \]
(2)$|\overrightarrow{a}|=3,\ |\overrightarrow{b}|=2$で,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角が${60}^\circ$であるとき,$|\overrightarrow{a}-3\overrightarrow{b}|$を求めよ.
(3)次の数を小さい順に並べよ.
\[ \log_3 5,\ \frac{1}{2}+\log_9 8,\ \log_9 26 \]
(4)次の定積分を求めよ.
\[ \int_0^3 |x^2-x-2| \, dx \]
弘前大学 国立 弘前大学 2012年 第1問
次の問いに答えよ.

(1)$0 \leqq x < 2\pi$のとき,不等式$\displaystyle 2 \sin x > \cos \left( x-\frac{\pi}{6} \right)$を解け.
(2)$\log_3 5=a,\ \log_5 7=b$とするとき,$\log_{105} 175$を$a$と$b$で表せ.
九州工業大学 国立 九州工業大学 2012年 第4問
$a,\ b$を実数とし,関数$f(x)$,$g(x)$を$f(x)=a(e^x+e^{-x})$,$g(x)=4x+b$とする.曲線$C:y=f(x)$の点$(\log 3,\ f(\log 3))$における接線が直線$\ell:y=g(x)$と一致するとき,次に答えよ.ただし,対数は自然対数を表し,$e$は自然対数の底とする.また,$\log 3 < 1.1$を用いてよい.

(1)$a,\ b$の値を求めよ.
(2)曲線$C$と直線$\ell$および直線$x=-\log 3$で囲まれた図形の面積$S$を求めよ.
(3)曲線$C$と直線$\ell$および直線$x=-\log 3$で囲まれた図形を$x$軸のまわりに1回転してできる立体の体積$V$を求めよ.
高知大学 国立 高知大学 2012年 第4問
次の問いに答えよ.

(1)次の不定積分を求めよ.
\[ \int \log (1+x) \, dx \]
(2)関数$f(x)$が区間$[0,\ 1]$で連続な増加関数であって,常に$f(x) \geqq 0$であるものとする.また,$n$を自然数とする.このとき,次の不等式が成り立つことを示せ.
\[ 0 \leqq \frac{1}{n} \sum_{k=1}^n f \left( \frac{k}{n} \right) -\int_0^1 f(x) \, dx \leqq \frac{1}{n} \{ f(1)-f(0) \} \]
(3)$f(x)=\log (1+x)$に対して(2)の結果を用いて,次の極限値を求めよ.
\[ \lim_{n \to \infty} \left[ \frac{1}{n} \log \left\{ \left( 1+\frac{1}{n} \right) \left( 1+\frac{2}{n} \right) \cdots \left( 1+\frac{n}{n} \right) \right\} \right] \]
大分大学 国立 大分大学 2012年 第4問
$\displaystyle I_1=\int_0^3 \sqrt{x^2+9} \, dx, I_2=\int_0^3 \frac{dx}{\sqrt{x^2+9}}$とする.

(1)次の等式がすべての実数$x$について成り立つように,定数$a,\ b$の値を定めなさい.
\[ \frac{x^2}{\sqrt{x^2+9}}=a\sqrt{x^2+9}+\frac{b}{\sqrt{x^2+9}} \]
(2)$I_1$において部分積分することにより,$I_1$を$I_2$で表しなさい.
(3)$\log (x+\sqrt{x^2+9})$の導関数を利用して,$I_2$を求めなさい.
(4)曲線$x^2-y^2=-9$と直線$y=3\sqrt{2}$で囲まれた部分の面積$S$を求めなさい.
佐賀大学 国立 佐賀大学 2012年 第3問
次の問いに答えよ.

(1)不等式$\log_{x(1-x)} \{x(y-1)\} \leqq 0$の表す領域を図示せよ.
(2)点$(x,\ y)$が上の不等式の表す領域を動くとき,$2x+y$の最小値を求めよ.
岐阜大学 国立 岐阜大学 2012年 第4問
数列$\{x_n\}$を
\[ x_1=1,\ x_{n+1}=x_n+x_n(1-\log x_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定めることにする.$e$を自然対数の底として,以下の問に答えよ.

(1)実数$x$が$0<x<e$のとき,$\displaystyle \frac{1}{e}(e-x) < 1-\log x < \frac{1}{x}(e-x)$となることを示せ.
(2)$n=1,\ 2,\ 3,\ \cdots$に対し,$1 \leqq x_n < e$であることを示せ.
(3)$n=1,\ 2,\ 3,\ \cdots$に対し,$\displaystyle e-x_{n+1}< \left(1-\frac{1}{e} \right) (e-x_n)$であることを示せ.
(4)$\displaystyle \lim_{n \to \infty}x_n=e$であることを示せ.
新潟大学 国立 新潟大学 2012年 第2問
次の問いに答えよ.

(1)$\log_{10}3$は無理数であることを示せ.
(2)$\displaystyle \frac{6}{13} < \log_{10}3 < \frac{1}{2}$が成り立つことを示せ.
(3)$3^{26}$の桁数を求めよ.
新潟大学 国立 新潟大学 2012年 第2問
次の問いに答えよ.

(1)$k,\ n$は不等式$k \leqq n$を満たす自然数とする.このとき,
\[ 2^{k-1}n(n-1)(n-2) \cdots (n-k+1) \leqq n^k k! \]
が成り立つことを示せ.
(2)自然数$n$に対して,$\displaystyle \left( 1+\frac{1}{n} \right)^n<3$が成り立つことを示せ.
(3)$\displaystyle \frac{9}{19} < \log_{10}3 < \frac{1}{2}$が成り立つことを示せ.
新潟大学 国立 新潟大学 2012年 第5問
次の問いに答えよ.

(1)実数$x \geqq 0$に対して,次の不等式が成り立つことを示せ.
\[ x-\frac{1}{2}x^2 \leqq \log (1+x) \leqq x \]
(2)数列$\{a_n\}$を
\[ a_n=n^2 \int_0^{\frac{1}{n}} \log (1+x) \, dx \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定めるとき,$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
(3)数列$\{b_n\}$を
\[ b_n=\sum_{k=1}^n \log \left( 1+\frac{k}{n^2} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定めるとき,$\displaystyle \lim_{n \to \infty}b_n$を求めよ.
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。