タグ「対数」の検索結果

61ページ目:全1047問中601問~610問を表示)
大阪工業大学 私立 大阪工業大学 2013年 第4問
関数$f(x)=\log x$について,次の問いに答えよ.

(1)曲線$y=f(x)$上の点$\mathrm{P}(a,\ f(a))$における接線$\ell_1$が原点$\mathrm{O}$を通るとき,$a$の値を求めよ.
(2)$a$を$(1)$で求めた値とするとき,曲線$y=f(x)$上の点$\mathrm{P}(a,\ f(a))$における法線$\ell_2$の方程式を求めよ.
(3)部分積分法を用いて,$\displaystyle \int \log x \, dx$を計算せよ.
(4)$(2)$で求めた法線$\ell_2$と曲線$y=\log x$および$x$軸で囲まれた図形の面積$S$を求めよ.
成城大学 私立 成城大学 2013年 第3問
$1 \leqq x \leqq 4$のとき,関数
\[ y=(\log_2 x)^3-\log_2 x^3+1 \]
の最大値,最小値と,そのときの$x$の値をそれぞれ求めよ.
成城大学 私立 成城大学 2013年 第2問
ある作業をするためにかかる時間は,作業回数に応じて変化し,$n$回目の作業時間$T_n$秒は,以下の式で示される.
\[ T_n=T_1 \cdot n^{-k} \]
ただし,$T_1$は$1$回目の作業時間,$k$は作業の種類によって異なる正の定数である.$\log_{10}3=0.4771$,$\log_{10}2=0.3010$として次の問いに答えなさい.

(1)作業$\mathrm{A}$の$1000$回目の作業時間が$150$秒,$2000$回目の作業時間が$50$秒であるときに,$k$の値を四捨五入して小数第$3$位まで求めよ.
(2)作業$\mathrm{B}$の$100$回目の作業時間が$1$回目の作業時間の半分になった.このときの$k$の値を,四捨五入して小数第$3$位まで求めよ.また,作業時間が$100$回目のさらに半分に縮まるのは,何回目の作業か.
青山学院大学 私立 青山学院大学 2013年 第1問
不等式
\[ (\log_3 x)^2+3 \log_x 81<13 \]
の解は
\[ \frac{[ア]}{[イ][ウ]}<x<[エ],\quad [オ]<x<[カ][キ] \]
である.
早稲田大学 私立 早稲田大学 2013年 第5問
関数$\displaystyle f(x)=\left( {27}^x+\frac{1}{{27}^x} \right)-5 \left( 9^x+\frac{1}{9^x} \right)-5 \left( 3^x+\frac{1}{3^x} \right)+1$について次の問に答えよ.

(1)$\displaystyle t=3^x+\frac{1}{3^x}$とおくとき,$t$の最小値は$[ヒ]$である.
(2)関数$f(x)$は$\displaystyle x=\log_3 \left( [フ] \pm \sqrt{[ヘ]} \right)$のとき,最小値$[ホ]$をとる.
早稲田大学 私立 早稲田大学 2013年 第3問
$a,\ b$を正の定数とする.

(1)$\displaystyle \int_0^{2\pi} |a \sin x+b \cos x| \, dx$を求めよ.
(2)$\displaystyle \lim_{n \to \infty} \sum_{k=n+1}^{2n} \int_{\frac{2(k-1) \pi}{n}}^{\frac{2k \pi}{n}} \left( \log \frac{k}{n} \right) |a \sin nx+b \cos nx| \, dx$を求めよ.
立教大学 私立 立教大学 2013年 第1問
次の空欄$[ア],\ [イ]$に「真」または「偽」のいずれかを記入せよ.また空欄$[ウ]$~$[シ]$に当てはまる数または式を記入せよ.

(1)ある自然数$n$について,命題「$n$が偶数ならば$n^2$は偶数である」の逆は$[ア]$,対偶は$[イ]$である.
(2)$3$次方程式$x^3+2x^2-8x-21=0$の解は$x=[ウ],\ [エ],\ [オ]$である.
(3)${(2x+\cos \theta)}^3$を展開したときの$x^2$の係数が$-6$のとき,$\theta=[カ]$である.ただし,$0 \leqq \theta<\pi$とする.
(4)$2$次方程式$x^2-2(k+1)x+2k^2=0$が実数解をもつような実数$k$の値の範囲は$[キ]$である.
(5)不等式$-1+2 \log_2 (x+1)>\log_{\frac{1}{2}}(2-x)$を満たす$x$の値の範囲は$[ク]$である.
(6)$\mathrm{A}$君が徒歩と自転車で移動した.スタート地点から途中まで分速$80 \, \mathrm{m}$で$30$分歩き,その後自転車に乗って$10$分進んでゴールに着いたところ,平均の速さは分速$130 \, \mathrm{m}$であった.このときの自転車の速さは分速$[ケ] \, \mathrm{m}$である.
(7)$2$つのベクトル$\overrightarrow{a}=(1,\ -2,\ 1)$と$\overrightarrow{b}=(x,\ y,\ -1)$の大きさが等しく,なす角が${60}^\circ$のとき,$x$の値は$[コ]$,$[サ]$である.
(8)数列$1,\ 11,\ 111,\ 1111,\ 11111,\ \cdots$の第$n$項を$n$の式で表すと,$[シ]$となる.
立教大学 私立 立教大学 2013年 第1問
次の空欄$[ア]$~$[ケ]$に当てはまる数または式を記入せよ.

(1)等差数列$\{a_n\}$において,初項から第$10$項までの和が$-8$,初項から第$21$項までの和が$14$である.この数列の初項$a_1$は$[ア]$で,公差は$[イ]$である.
(2)$2 \log_3 4+\log_9 5-\log_3 8=\log_3 x$の解は$x=[ウ]$である.

(3)$\displaystyle x=\frac{1}{\sqrt{7}-\sqrt{5}},\ y=\frac{1}{\sqrt{7}+\sqrt{5}}$のとき,$x^3+y^3$の値は$[エ]$である.

(4)$\displaystyle \frac{1}{x}+\frac{1}{y}=\frac{1}{3}$となる自然数の組$(x,\ y)$で$x \geqq y$を満たすものをすべてあげると$(x,\ y)=[オ]$である.
(5)正の数$k$と角$\theta$に対して,$\sin \theta,\ \cos \theta$が$2$次方程式$5x^2-kx+2=0$の解となるような$k$の値は$[カ]$である.
(6)三角形$\mathrm{ABC}$において,$\displaystyle \frac{\sin A}{\sqrt{2}}=\frac{\sin B}{2}=\frac{\sin C}{1+\sqrt{3}}$であるとき,$\cos C$の値は$[キ]$である.
(7)整式$P(x)$を$2x^2+9x-5$で割ると余りが$3x+5$であり,$x-2$で割ると余りが$-3$であるとき,$P(x)$を$x^2+3x-10$で割ると,余りは$[ク]$である.
(8)座標空間内に$4$点$\mathrm{A}(-1,\ 2,\ 1)$,$\mathrm{B}(-1,\ -1,\ 4)$,$\mathrm{C}(1,\ -1,\ 1)$,$\mathrm{D}(x,\ y,\ z)$がある.これら$4$点が同一平面上にあり,かつこれらを頂点とする四角形がひし形であるのは,$(x,\ y,\ z)=[ケ]$のときである.
立教大学 私立 立教大学 2013年 第1問
次の空欄$[ア]$~$[ケ]$に当てはまる数または式を記入せよ.

(1)不等式$x |x+2|<2x$の解は$[ア]$である.

(2)$a$を実数とする.$\displaystyle \frac{3+i}{1+ai}$の実部と虚部の和が$0$であるとき,$a=[イ]$である.ただし,$i$は虚数単位とする.
(3)座標平面上の点$(2,\ 1)$から円$x^2+y^2=1$へ引いた接線の方程式は$y=1$と$y=[ウ]$である.
(4)${128}^{\frac{1}{6}},\ 8^{\frac{2}{5}},\ {81}^{\frac{1}{5}}$のうち最大のものは$[エ]$である.
(5)$\cos {165}^\circ$の値は$[オ]$である.
(6)平面上に三角形$\mathrm{OAB}$と点$\mathrm{P}$があり,$\overrightarrow{\mathrm{OP}}+2 \overrightarrow{\mathrm{AP}}+3 \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{0}}$を満たしている.直線$\mathrm{AB}$と直線$\mathrm{OP}$との交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}=[カ] \overrightarrow{\mathrm{OA}}+[キ] \overrightarrow{\mathrm{OB}}$である.
(7)数列$\{a_k\}$は$a_1=0$と漸化式$a_{k+1}=2a_k+1 (k=1,\ 2,\ 3,\ \cdots)$で定められている.このとき,$\displaystyle \sum_{k=1}^n \log_8 (1+a_k)=[ク]$である.
(8)数字の$1$が書かれたカードが$1$枚,数字の$2$が書かれたカードが$2$枚,数字の$3$が書かれたカードが$3$枚ある.この$6$枚のカード全部を$1$列に並べるとき,数字の$2$が書かれたカードが連続して並ぶ確率は$[ケ]$である.
中京大学 私立 中京大学 2013年 第1問
以下の各問で,$[ ]$にあてはまる数値または記号を求めよ.

(1)放物線$y=ax^2+bx+c$が$3$点$(-3,\ -15)$,$(0,\ -24)$,$(3,\ 21)$を通るとき,
\[ a=[ア],\quad b=[イ],\quad c=-[ウ][エ] \]
であり,この放物線と$x$軸との交点は$(-[オ],\ 0)$,$([カ],\ 0)$である.
(2)点$\mathrm{O}$を$\triangle \mathrm{ABC}$の内心とする.$\angle \mathrm{BAC}={60}^\circ$,$\angle \mathrm{ABO}={35}^\circ$のとき,
\[ \angle \mathrm{ACO}={[キ][ク]}^\circ,\quad \angle \mathrm{BOC}={[ケ][コ][サ]}^\circ \]
である.
(3)関数$\displaystyle y=\frac{1}{3} {\left( \frac{1}{8} \right)}^x-2 {\left( \frac{1}{4} \right)}^x+3 {\left( \frac{1}{2} \right)}^x+1 (x>-2)$は


$x=[シ]$で最大値$\displaystyle \frac{[ス]}{[セ]}$


をとり,

$x=-\log_2 [ソ]$で最小値$[タ]$

をとる.
(4)条件$a_1=0$,$\displaystyle a_n=a_{n-1}+\frac{n-1}{2013} (n=2,\ 3,\ 4,\ \cdots)$によって定められる数列$\{a_n\}$において,$a_n \geqq 1$を満たす最小の$n$は$[チ][ツ]$であり,
\[ a_{[チ][ツ]}=\frac{[テ][ト][ナ]}{[ニ][ヌ][ネ]} \]
である.
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。