タグ「対数」の検索結果

54ページ目:全1047問中531問~540問を表示)
島根大学 国立 島根大学 2013年 第4問
$x<1$に対して,$f(x)=|x| \log (1-x)$とおく.このとき,次の問いに答えよ.

(1)関数$y=f(x)$は$x=0$で微分可能かどうかを調べよ.
(2)関数$y=f(x)$のグラフと直線$y=-x$の交点を求めよ.
(3)不定積分$\displaystyle \int x \log (1-x) \, dx$を求めよ.
(4)$x \leqq 0$において関数$y=f(x)$のグラフと直線$y=-x$で囲まれた図形の面積$S$を求めよ.
九州工業大学 国立 九州工業大学 2013年 第2問
関数$f(x)=\log (x^2-x+2) \ (0 \leqq x \leqq 1)$に対して,以下の問いに答えよ.ただし,対数は自然対数を表している.

(1)$y=f(x) \ (0 \leqq x \leqq 1)$の極値を求めよ.
(2)$x$についての方程式$\log (x^2-x+2)=x$は$\displaystyle \frac{1}{2}<x<1$の範囲に実数解をただ$1$つもつことを示せ.必要であれば,$\log 2<0.7$,$\log 7>1.9$であることを用いてよい.
(3)$y=f^\prime(x) \ (0 \leqq x \leqq 1)$の最大値と最小値を求めよ.
(4)平均値の定理を用いることで,$0 \leqq a<b \leqq 1$となる実数$a,\ b$に対して,$\displaystyle |f(b)-f(a)|<\frac{1}{2}|b-a|$となることを示せ.
岐阜大学 国立 岐阜大学 2013年 第4問
正の整数$n$について,$x>0$で定義された関数$f_n(x)$を次で定める.
\[ \begin{array}{l}
f_1(x)=x \log x \\
f_{n+1}(x)=(n+1) \int_1^x f_n(t) \, dt+\displaystyle\frac{1}{n+1}(x^{n+1}-1)
\end{array} \]
以下の問に答えよ.ただし,$\log x$は$x$の自然対数とする.

(1)関数$f_2(x)$を求めよ.
(2)関数$f_n(x)$の具体的な形を推測し,それを数学的帰納法で証明せよ.
(3)$g(x)=|f_2(x)|-|x-1|$とおくとき,$g(x)$が$x=1$で微分可能であることを証明せよ.また,微分係数$g^\prime(1)$を求めよ.
愛媛大学 国立 愛媛大学 2013年 第3問
関数$f(x),\ g(x)$を
\[ f(x)=\int_1^x \log t \, dt \qquad g(x)=\int_1^x te^{t-1} \, dt \]
で定める.ただし,$f(x)$は$x>0$の範囲で考える.

(1)$f(x),\ g(x)$を求めよ.
(2)$x>0$のとき,$g(x)>g(-x)$が成り立つことを示せ.
(3)実数$a,\ b$が$0<a<b$と$f(a)=f(b)$を満たすとき,次の$(ⅰ),\ (ⅱ),\ (ⅲ)$が成り立つことを示せ.
\[ (ⅰ) a<1<b \qquad (ⅱ) g(\log a)=g(\log b) \qquad (ⅲ) ab<1 \]
愛媛大学 国立 愛媛大学 2013年 第5問
関数$f(x),\ g(x)$を
\[ f(x)=\int_1^x \log t \, dt \qquad g(x)=\int_1^x te^{t-1} \, dt \]
で定める.ただし,$f(x)$は$x>0$の範囲で考える.

(1)$f(x),\ g(x)$を求めよ.
(2)$x>0$のとき,$g(x)>g(-x)$が成り立つことを示せ.
(3)実数$a,\ b$が$0<a<b$と$f(a)=f(b)$を満たすとき,次の$(ⅰ),\ (ⅱ),\ (ⅲ)$が成り立つことを示せ.
\[ (ⅰ) a<1<b \qquad (ⅱ) g(\log a)=g(\log b) \qquad (ⅲ) ab<1 \]
長崎大学 国立 長崎大学 2013年 第2問
次の問いに答えよ.

(1)$\displaystyle a_1=\frac{3}{2},\ a_{n+1}+2a_{n+1}a_n-3a_n=0 \ (n \geqq 1)$で与えられる数列$\{a_n\}$について,$a_2,\ a_3,\ a_4,\ a_5$の値を求めよ.また,一般項$a_n$を推測し,その推測の結果を数学的帰納法で証明せよ.
(2)$\displaystyle \frac{7}{12}\pi=\frac{\pi}{3}+\frac{\pi}{4}$であることを利用して$\displaystyle \sin \frac{7}{12}\pi$を求め,$1 \leqq x \leqq 4$のとき,次の方程式を解け.
\[ \sin x=\frac{\sqrt{6}+\sqrt{2}}{4} \]
(3)$\displaystyle 0 \leqq x<\frac{\pi}{2}$とする.このとき,$X=\log_2 \cos x$の範囲を求め,次の不等式を解け.
\[ 2(\log_2 \cos x)^2+(4-\log_2 3)\log_2 \cos x+2-\log_23 \leqq 0 \]
{\bf 注意:} $\log_2 \cos x$は$\log_2(\cos x)$を表す.
島根大学 国立 島根大学 2013年 第2問
$x<1$に対して,$f(x)=|x| \log (1-x)$とおく.このとき,次の問いに答えよ.

(1)関数$y=f(x)$は$x=0$で微分可能かどうかを調べよ.
(2)関数$y=f(x)$のグラフと直線$y=-x$の交点を求めよ.
(3)不定積分$\displaystyle \int x \log (1-x) \, dx$を求めよ.
(4)$x \leqq 0$において関数$y=f(x)$のグラフと直線$y=-x$で囲まれた図形の面積$S$を求めよ.
宮崎大学 国立 宮崎大学 2013年 第1問
次の各問に答えよ.ただし,$\log x$は$x$の自然対数を表す.

(1)次の関数を微分せよ.
\[ (ⅰ) y=\frac{x}{e^x} \qquad (ⅱ) y=\log \left( \frac{2+\sin x}{2-\sin x} \right) \]
(2)次の定積分の値を求めよ.

(i) $\displaystyle \int_0^1 \frac{2x^2-x}{2x+1} \, dx$

(ii) $\displaystyle \int_0^{\frac{\sqrt{\pi}}{2}}x \cos (x^2) \, dx$

(iii) $\displaystyle \int_0^1 x^3 \log (x^2+1) \, dx$

\mon[$\tokeishi$] $\displaystyle \int_{-\pi}^\pi |e^{\cos x|\sin x} \, dx$
鳥取大学 国立 鳥取大学 2013年 第4問
自然数の数列$\{a_n\}$の隣り合う$2$項に次の関係式が成り立つ.
\[ \frac{a_{n+1}}{{a_n}^2}=3^n \quad (n=1,\ 2,\ \cdots) \]
また,$a_1=1$である.このとき,次の問いに答えよ.

(1)$b_n=\log_3 a_n$とおくとき,$b_n$を$n$の式で表せ.
(2)$a_n \geqq 10^{100}$となる最小の$n$を求めよ.ただし,$\log_{10}3=0.4771$とする.
鹿児島大学 国立 鹿児島大学 2013年 第2問
次の各問いに答えよ.

(1)次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) $m,\ n$が自然数ならば,$\displaystyle \frac{m}{n} \neq \sqrt{2}$である.このことを証明せよ.
(ii) $p,\ q$が自然数ならば,$\sqrt{2}$は$\displaystyle \frac{p}{q}$と$\displaystyle \frac{2q}{p}$の間にある.すなわち,$\displaystyle \frac{p}{q}<\sqrt{2}<\frac{2q}{p}$または$\displaystyle \frac{2q}{p}<\sqrt{2}<\frac{p}{q}$が成り立つ.このことを証明せよ.

(2)定数$a$は実数で,$a>0,\ a \neq 1$とする.このとき,すべての正の実数$x,\ y$に対して$x^{\log_ay}=y^{\log_ax}$が成り立つ.このことを証明せよ.
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。