タグ「対数」の検索結果

52ページ目:全1047問中511問~520問を表示)
旭川医科大学 国立 旭川医科大学 2013年 第4問
次の問いに答えよ.

(1)関数$y=x \log x-x \ (x>0)$の増減を調べ,そのグラフをかけ.
(2)$a$を正の実数とする.曲線$C:y=\log (x+1)$上の点$(t,\ \log (t+1))$における接線$\ell_t$が,曲線$C_a:y=a \log x$上の点$(s,\ a \log s)$における接線にもなっているとき,$t$と$s$の関係を$a$を含まない式で表せ.
(3)任意に与えられた$t>-1$に対して,直線$\ell_t$が曲線$C_a$の接線にもなっているような$a$が唯一つ存在すること,および$a>1$であることを示せ.
(4)直線$\ell_t$が曲線$C_a$の接線になっているとき,その接点の$x$座標を$s(t)$とかくことにする.$s(t)$を$t$の関数とみて増減を調べ,さらに$\displaystyle \lim_{t \to \infty}(s(t)-t)$を求めよ.
小樽商科大学 国立 小樽商科大学 2013年 第4問
正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$が下図のように与えられている.正方形$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$,正方形$\mathrm{A}_3 \mathrm{B}_3 \mathrm{C}_3 \mathrm{D}_3$,$\cdots$,正方形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$,正方形$\mathrm{A}_{n+1} \mathrm{B}_{n+1} \mathrm{C}_{n+1} \mathrm{D}_{n+1}$,$\cdots$を順に考える.ただし,$\mathrm{A}_{n+1}$,$\mathrm{B}_{n+1}$,$\mathrm{C}_{n+1}$,$\mathrm{D}_{n+1}$はそれぞれ順に$\mathrm{A}_n \mathrm{B}_n$,$\mathrm{B}_n \mathrm{C}_n$,$\mathrm{C}_n \mathrm{D}_n$,$\mathrm{D}_n \mathrm{A}_n$の中点,$\mathrm{O}$は$\mathrm{A}_1 \mathrm{C}_1$の中点である.正方形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$の面積を$S_n$とする.その時,$\displaystyle \frac{S_n}{S_1}$が初めて$\displaystyle \frac{1}{100}$以下となる$n$の値とその時の$\angle \mathrm{A}_1 \mathrm{OA}_n$を求めよ.$\log_{10}2=0.301$とする.
(図は省略)
帯広畜産大学 国立 帯広畜産大学 2013年 第1問
自然数$n$について,$\{a_n\}$は初項$a$,公差$d$の等差数列であり,その一般項を$a_n$で表し,初項から第$n$項までの和を$S_a(n)$で表す.また,$\{b_n\}$は一般項が$b_n=2^{a_n}$で定義される数列であり,その初項から第$n$項までの和を$S_b(n)$で表す.次の各問に答えよ.

(1)$a=1,\ d=2$とする.

(i) $n$を用いて$a_n$と$S_a(n)$を表しなさい.
(ii) $\log_{10} \{S_a(1000)\}$の値を求めなさい.
(iii) $10<S_a(n)<50$を満たすすべての$n$の値を求めなさい.

(2)$b_3=\sqrt[5]{4},\ b_7=\sqrt[5]{64}$とする.

(i) $a$と$d$の値を求めなさい.
(ii) $b_{n+1}$の$b_n$に対する比を求めなさい.
(iii) $n$を用いて$b_n$と$S_b(n)$を表しなさい.
\mon[$\tokeishi$] $b_n=2$のとき,$n$と$S_b(n)$のそれぞれの値を求めなさい.

(3)自然数$m$について,$u=\sin a_{2m-1}+\cos a_{2m-1}$,$v=\sin a_{2m}-\cos a_{2m}$,$y=uv$,$0<a<2\pi$,$d=\pi$とする.

(i) $u$の最大値と,$u$が最大値をとるときの$a$の値を求めなさい.
(ii) $v$の最大値と,$v$が最大値をとるときの$a$の値を求めなさい.
(iii) $y$の最大値と,$y$が最大値をとるときの$a$の値を求めなさい.
茨城大学 国立 茨城大学 2013年 第1問
以下の各問に答えよ.

(1)関数$f(x)=\log_a (ax)$を微分せよ.ただし,$a>0$かつ$a \neq 1$とする.

(2)関数$\displaystyle g(x)=\int_1^{x^2+1}t^2(t-1)^5 \, dt$を微分せよ.

(3)定積分$\displaystyle \int_0^1 \frac{1-x}{1+x} \, dx$を求めよ.

(4)定積分$\displaystyle \int_1^e \frac{\log \sqrt{x}}{\sqrt{x}} \, dx$を求めよ.ただし,対数は自然対数であり,$e$は自然対数の底である.
電気通信大学 国立 電気通信大学 2013年 第1問
関数$\displaystyle f(x)=\sin x+\frac{1}{2 \sin x} \ (0<x<\pi)$について以下の問いに答えよ.

(1)$f^\prime(x)=0$となる$x$の値を求めよ.
(2)$f(x)$の増減を調べ,極値を求めよ.さらに,$y=f(x)$のグラフの概形をかけ.ただし,グラフの凹凸は調べなくてよい.
(3)$0<x<\pi$のとき,
\[ \frac{d}{dx}\{\log (1-\cos x)-\log (1+\cos x)\} \]
を求めよ.
(4)定積分$\displaystyle \int_{\frac{\pi}{4}}^{\frac{3}{4}\pi}f(x) \, dx$を求めよ.
滋賀大学 国立 滋賀大学 2013年 第4問
$\triangle \mathrm{O}_1 \mathrm{A}_1 \mathrm{B}_1$において辺$\mathrm{A}_1 \mathrm{B}_1$,$\mathrm{B}_1 \mathrm{O}_1$,$\mathrm{O}_1 \mathrm{A}_1$の中点をそれぞれ$\mathrm{O}_2$,$\mathrm{A}_2$,$\mathrm{B}_2$とする.次に,$\triangle \mathrm{O}_2 \mathrm{A}_2 \mathrm{B}_2$において辺$\mathrm{A}_2 \mathrm{B}_2$,$\mathrm{B}_2 \mathrm{O}_2$,$\mathrm{O}_2 \mathrm{A}_2$の中点をそれぞれ$\mathrm{O}_3$,$\mathrm{A}_3$,$\mathrm{B}_3$とする.これをくり返して,$\triangle \mathrm{O}_n \mathrm{A}_n \mathrm{B}_n$において辺$\mathrm{A}_n \mathrm{B}_n$,$\mathrm{B}_n \mathrm{O}_n$,$\mathrm{O}_n \mathrm{A}_n$の中点をそれぞれ$\mathrm{O}_{n+1}$,$\mathrm{A}_{n+1}$,$\mathrm{B}_{n+1}$とする.ただし,$n=1,\ 2,\ 3,\ \cdots$である.また,$\overrightarrow{\mathrm{O}_1 \mathrm{A}_1}=\overrightarrow{a}$,$\overrightarrow{\mathrm{O}_1 \mathrm{B}_1}=\overrightarrow{b}$,$|\overrightarrow{a}|=3$,$|\overrightarrow{b}|=\sqrt{6}$,$\displaystyle \overrightarrow{a} \cdot \overrightarrow{b}=\frac{3}{2}$である.このとき,次の問いに答えよ.

(1)$\triangle \mathrm{O}_1 \mathrm{A}_1 \mathrm{B}_1$の重心を$\mathrm{G}$とするとき,$|\overrightarrow{\mathrm{GO}}_1|$,$|\overrightarrow{\mathrm{GA}}_1|$,$|\overrightarrow{\mathrm{GB}}_1|$の値を求めよ.
(2)$\triangle \mathrm{O}_n \mathrm{A}_n \mathrm{B}_n$の重心が$\mathrm{G}$であることを,数学的帰納法を用いて証明せよ.
(3)$\triangle \mathrm{O}_n \mathrm{A}_n \mathrm{B}_n$が$\mathrm{G}$を中心とする半径$10^{-4}$の円の内部に含まれる最小の$n$の値を求めよ.ただし,$\log_{10}2=0.3010$とする.
鳥取大学 国立 鳥取大学 2013年 第4問
自然数の数列$\{a_n\}$の隣り合う$2$項に次の関係式が成り立つ.
\[ \frac{a_{n+1}}{{a_n}^2}=3^n \quad (n=1,\ 2,\ \cdots) \]
また,$a_1=1$である.このとき,次の問いに答えよ.

(1)$b_n=\log_3 a_n$とおくとき,$b_n$を$n$の式で表せ.
(2)$a_n \geqq 10^{100}$となる最小の$n$を求めよ.ただし,$\log_{10}3=0.4771$とする.
鳥取大学 国立 鳥取大学 2013年 第2問
自然数の数列$\{a_n\}$の隣り合う$2$項に次の関係式が成り立つ.
\[ \frac{a_{n+1}}{{a_n}^2}=3^n \quad (n=1,\ 2,\ \cdots) \]
また,$a_1=1$である.このとき,次の問いに答えよ.

(1)$b_n=\log_3 a_n$とおくとき,$b_n$を$n$の式で表せ.
(2)$a_n \geqq 10^{100}$となる最小の$n$を求めよ.ただし,$\log_{10}3=0.4771$とする.
山形大学 国立 山形大学 2013年 第1問
次の問いに答えよ.

(1)$2$つの循環小数$a=1. \dot{2}$,$b=0. \dot{8} \dot{1}$に対して,$ab$の値を求めよ.
(2)$a$を定数とする.$xy$平面上の曲線$y=\log_2x$と直線$y=x+a$は$2$つの共有点をもつ.共有点の$x$座標$x_1,\ x_2$が$x_2=4x_1$を満たすように,$a$の値を定めよ.
(3)$xy$平面において,曲線$\displaystyle C:y=\frac{1}{x} \ (x>0)$と直線$\displaystyle y=-x+\frac{10}{3}$の$2$つの共有点を$\mathrm{A}$,$\mathrm{B}$とする.曲線$C$上の点$\mathrm{P}$が$\mathrm{PA}=\mathrm{PB}$を満たすとき,$\triangle \mathrm{PAB}$の面積を求めよ.
山形大学 国立 山形大学 2013年 第3問
$n$を$2$以上の自然数とする.このとき,次の問に答えよ.

(1)$\displaystyle \int_1^n \log x \, dx$を求めよ.
(2)関数$y=\log x$の定積分を利用して,次の不等式を証明せよ.
\[ (n-1)! \leqq n^n e^{-n+1} \leqq n! \]
(3)極限値
\[ \lim_{n \to \infty}\frac{\log (n!)}{n \log n} \]
を求めよ.
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。