タグ「対数」の検索結果

35ページ目:全1047問中341問~350問を表示)
信州大学 国立 信州大学 2014年 第1問
次の問いに答えよ.

(1)関数$y=2 \cos x-\cos 2x$の$0 \leqq x \leqq \pi$における最大値を求めよ.
(2)関数$\displaystyle y=(\log_{0.5}x)^2-\frac{1}{2}(\log_{0.5}x)+\frac{1}{2}$の$0.5 \leqq x \leqq 2$における最大値と最小値を求めよ.
信州大学 国立 信州大学 2014年 第2問
関数$\displaystyle f(x)=\int_x^{x+1} |\log(2-t)| \, dt (0<x<1)$について,次の問いに答えよ.ただし,対数は自然対数である.

(1)$f(x)$の導関数を求めよ.
(2)$f(x)$を最小にする$x$の値を求めよ.
信州大学 国立 信州大学 2014年 第4問
$f(x)=\log (x+\sqrt{x^2+1})$とし,曲線$y=f(x)$を$C$とする.ただし,対数は自然対数である.

(1)$f(x)$の導関数を求めよ.
(2)曲線$C$と直線$y=1$の交点$\mathrm{P}$の座標を求めよ.
(3)曲線$C$,直線$y=1$および$y$軸で囲まれた図形の面積$S$を求めよ.
名古屋工業大学 国立 名古屋工業大学 2014年 第1問
以下の問いに答えよ.

(1)$r \neq 1$のとき$S_n=r+2r^2+3r^3+\cdots +nr^n$を求めよ.
(2)$x>0$に対して
\[ f_n(x)=e^{-x}+2e^{-2x}+3e^{-3x}+\cdots +ne^{-nx} \]
とおく.極限$\displaystyle f(x)=\lim_{n \to \infty}f_n(x)$を求めよ.ただし$\displaystyle \lim_{t \to \infty} te^{-t}=0$であることを用いてもよい.
(3)$(2)$で得られた関数$f(x)$について,不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(4)$(2)$で得られた関数$f(x)$について,定積分$\displaystyle \int_{\log 2}^{\log 3} xf(x) \, dx$を求めよ.
岩手大学 国立 岩手大学 2014年 第6問
関数$\displaystyle f(x)=\frac{\log x}{\sqrt{x}} (x>0)$について,次の問いに答えよ.ただし,$\log x$は$x$の自然対数,$e$は自然対数の底とする.

(1)極限$\displaystyle \lim_{x \to +0}f(x)$を求めよ.
(2)$y=f(x)$の極値を求めよ.
(3)曲線$y=|f(x)|$と$x$軸および$2$直線$\displaystyle x=\frac{1}{e}$,$x=e$で囲まれた図形を$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
岩手大学 国立 岩手大学 2014年 第1問
次の問いに答えよ.

(1)関数$y=-2 \sin 2x+2 \cos 2x+3$の最大値と最小値を求めよ.ただし,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$とする.
(2)$\displaystyle \lim_{x \to 1} \frac{a \sqrt{x+3}-8}{x-1}$が有限な値になるように定数$a$の値を定め,そのときの極限値を求めよ.
(3)直線$y=x$に関する対称移動の$1$次変換を$f$とする.$1$次変換$g$が点$(2,\ 4)$を点$(4,\ 6)$に移し,合成変換$f \circ g$が点$(2,\ 2)$を点$(-12,\ 4)$に移すとき,$g$を表す行列を求めよ.
(4)次の不定積分を求めよ.
\[ \int x \log (x+1) \, dx \]
岩手大学 国立 岩手大学 2014年 第2問
$n$を自然数とし,次の漸化式で$2$つの数列$\{a_n\}$,$\{b_n\}$を定める.

$a_1=1,\ a_2=1,\ a_{n+2}=2a_n (n=1,\ 2,\ 3,\ \cdots)$
$b_1=1,\ b_2=1,\ b_3=1,\ b_{n+3}=3b_n (n=1,\ 2,\ 3,\ \cdots)$

以下の問いに答えよ.ただし,必要ならば,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$を用いよ.

(1)$\{a_n\}$と$\{b_n\}$の最初の$6$項をそれぞれ求めよ.
(2)$a_{n+6}=8a_n$となることを示せ.
(3)$m$を$0$以上の整数とするとき,$a_{6m+1}$と$b_{6m+1}$を$m$を用いて表せ.
(4)$6$で割った余りが$1$となるような$n$で,$a_n \geqq b_n$となるものをすべて求めよ.
(5)$6$で割った余りが$3$となるような$n$で,$a_n \geqq b_n$となるものをすべて求めよ.
帯広畜産大学 国立 帯広畜産大学 2014年 第1問
$2$次方程式$x^2-x-1=0$の解を$\alpha,\ \beta (\alpha>\beta)$とし,
\[ \left( \begin{array}{c}
a_n \\
b_n
\end{array} \right)=\left( \begin{array}{cc}
\displaystyle\frac{\sqrt{5}}{5} & -\displaystyle\frac{\sqrt{5}}{5} \\
1 & 1
\end{array} \right) \left( \begin{array}{c}
\alpha^n \\
\beta^n
\end{array} \right) \]
によって数列$\{a_n\}$,$\{b_n\}$を定義する.ただし,$n$は自然数である.次の各問に答えなさい.

(1)次の各問に答えなさい.

(i) $\alpha,\ \beta$の値を求めなさい.
(ii) $a_1,\ a_2,\ a_3$の値を求めなさい.
(iii) $b_1,\ b_2,\ b_3$の値を求めなさい.

(2)ベクトル$\overrightarrow{p},\ \overrightarrow{q},\ \overrightarrow{r}$をそれぞれ$\overrightarrow{p}=(a_1,\ b_1)$,$\overrightarrow{q}=(a_2,\ b_2)$,$\overrightarrow{r}=(a_3,\ b_3)$と定義する.

(i) $\overrightarrow{p},\ \overrightarrow{q},\ \overrightarrow{r}$の大きさ$|\overrightarrow{p}|$,$|\overrightarrow{q}|$,$|\overrightarrow{r}|$を求めなさい.
(ii) $\overrightarrow{p}$と$\overrightarrow{q}$のなす角$\theta$について,$\cos \theta$,$\sin \theta$,$\tan \theta$を求めなさい.
(iii) $\overrightarrow{q}$と$\overrightarrow{r}$のなす角$\theta$について,$\cos 2\theta$,$\sin 2\theta$,$\tan 2\theta$を求めなさい.

(3)自然数$n$について,$a_{n+1} \geqq a_n$,$b_{n+1} \geqq b_n$がそれぞれ成り立つ.

(i) $\displaystyle \log_{10}a_n \leqq \frac{1}{3}$を満たす$n$をすべて求めなさい.

(ii) $\displaystyle \log_{10}b_n \leqq \frac{1}{3}$を満たす$n$をすべて求めなさい.

(iii) $\log_{10}(a_nb_n) \leqq 1$を満たす$n$をすべて求めなさい.
長岡技術科学大学 国立 長岡技術科学大学 2014年 第4問
関数$\displaystyle f(x)=\frac{\log x}{x},\ x>0$を考える.下の問いに答えなさい.

(1)$f(x)$の最大値,およびその最大値を与える$x$の値を求めなさい.
(2)$(1)$の結果を利用して$e^3>3^e$であることを証明しなさい.ただし,$e$は自然対数の底である.
旭川医科大学 国立 旭川医科大学 2014年 第1問
関数$f(x)=\log (1+x^2)$について,次の問いに答えよ.

(1)$\displaystyle \int_0^1 \log (1+x^2) \, dx$を求めよ.
(2)導関数$f^\prime(x)$の増減を調べ,$y=f^\prime(x)$のグラフの概形をかけ.
(3)曲線$C:y=f(x)$と曲線$C$の互いに直交している$2$本の接線とで囲まれる図形の面積$S$を求めよ.
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。