タグ「対数」の検索結果

26ページ目:全1047問中251問~260問を表示)
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$2$つの自然数$p,\ q$が$p^2+pq+q^2=19$を満たすとき,$p+q=[ア]$である.
(2)$0 \leqq \theta<2\pi$のとき,$\sin^2 \theta+\cos \theta-1$の最大値は$[イ]$であり,最小値は$[ウ]$である.
(3)$\displaystyle S=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+\cdots +\frac{1}{\sqrt{45}+\sqrt{49}}$とすると,$S$の値は$[エ]$である.
(4)方程式$\log_{\sqrt{2}}(2-x)+\log_2 (x+1)=1$の解をすべて求めると,$x=[オ]$である.
(5)等式$\displaystyle f(x)=x^2+3 \int_0^1 f(t) \, dt$を満たす関数は,$f(x)=[カ]$である.
(6)座標空間における$4$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$,$\mathrm{D}(x,\ 4,\ 5)$が同一平面上にあるとき,$x=[キ]$である.
(7)$3$次方程式$x^3-x^2+ax+b=0$の解の$1$つが$1+i$のとき,$a=[ク]$,$b=[ケ]$である.ただし,$a,\ b$は実数とし,$i$は虚数単位とする.
(8)三角形$\mathrm{ABC}$の辺の長さが$\mathrm{AB}=4$,$\mathrm{BC}=5$,$\mathrm{CA}=6$のとき,三角形$\mathrm{ABC}$の面積は$[コ]$である.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$\displaystyle \int_2^4 (x^2+ax+2) \, dx=\frac{14}{3}$を満たす$a$の値は$[ア]$である.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$のとき,$\cos \theta+\sqrt{3} \sin \theta$の最大値は$[イ]$であり,最小値は$[ウ]$である.
(3)実数$x$が$0<x<1$かつ${(\log_2 x)}^2+\log_2 x-6=0$を満たすとき,$x$の値は$[エ]$である.
(4)$3$次方程式$(x-1)(x^2+ax+a+2)=0$が$2$重解をもつとき,$a$の値をすべて求めると,$[オ]$である.
(5)実数$a,\ b$を用いて$\displaystyle \frac{1}{2+i}+\frac{1}{3+4i}=a+bi$と表すとき,$a=[カ]$であり,$b=[キ]$である.ただし,$i$は虚数単位とする.
(6)$3$つのさいころを同時に投げるとき,ちょうど$2$つのさいころが同じ目になる確率は$[ク]$である.
(7)ベクトル$(2,\ a,\ b)$が$2$つのベクトル$(1,\ -1,\ 3)$,$(-2,\ 1,\ 1)$に垂直であるとき,$(a,\ b)=[ケ]$である.
(8)底辺の長さが$a$,高さが$b$の三角形が$2a+b=6$を満たすとき,三角形の面積の最大値は$[コ]$である.
中央大学 私立 中央大学 2015年 第4問
「当たり」のカードが$2$枚,「外れ」のカードが$8$枚,計$10$枚のカードが入っている箱がある.この箱を使って,次の試行を行う.
\begin{itemize}
試行$\mathrm{A}$:カードを$1$枚引き,「当たり」の有無を確認して,箱に戻す.
試行$\mathrm{B}$:カードを$2$枚引き,「当たり」の有無を確認して,箱に戻す.
\end{itemize}
$k$を正の整数とし,試行$\mathrm{A}$を$k$回繰り返したとき,

「当たり」の有る試行が,少なくとも$1$回ある確率

を$P(k)$とする.一方,試行$\mathrm{B}$を$k$回繰り返した時に,

$2$枚とも「当たり」である試行が,少なくとも$1$回ある確率

を$Q(k)$とする.このとき,以下の設問に答えよ.

(1)$P(3)$および$Q(2)$を求めよ.
(2)下の常用対数表を用いて,$\log_{10}45$の値を小数点以下$3$位まで求めよ.


\begin{tabular}{c|ccccc}
\hline
$n$ & $2$ & $3$ & $7$ & $11$ & $13$ \\ \hline
$\log_{10}n$ & $0.301$ & $0.477$ & $0.845$ & $1.041$ & $1.114$ \\ \hline
\end{tabular}


(3)$P(10)$と$Q(100)$はどちらが大きいか.根拠を述べて解答せよ.なお,前問の常用対数表を利用してよい.
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)$3$次関数$y=4x^3-12x+1 (-1 \leqq x \leqq \sqrt{3})$のグラフを$G$とする.$k$を実数とし,直線$\ell:y=-3x+k$を考える.$\ell$と$G$が異なる$2$つの共有点をもつための必要十分条件は,
\[ k=[ア]+[イ] \sqrt{[ウ]} \]
または
\[ [エ]+[オ] \sqrt{[カ]}<k<[キ] \]
である.
(2)不等式$9^{\log_3 x}-3 \cdot 2^{(\log_2 x+2)}+3^3>0$の解は,$[ク]<x<[ケ]$または$[コ]<x$である.
(3)下図のような道がある.

(i) $\mathrm{C}$を経由して,$\mathrm{A}$から$\mathrm{B}$まで最短距離で行く道順は$[サ]$通りである.
(ii) $\mathrm{A}$から$\mathrm{B}$まで最短距離で行く道順は$[シ]$通りである.

(図は省略)
東京理科大学 私立 東京理科大学 2015年 第1問
数列$\{a_n\}$を初項$5 \log_2 3$,公差$\displaystyle -\frac{1}{2} \log_2 3-\frac{1}{2}$の等差数列とする.このとき,

(1)$\displaystyle a_{10}=\frac{[ア]}{[イ]} \log_2 3-\frac{[ウ]}{[エ]},\quad a_{11}=-[オ]$
である.
(2)数列$\{b_n\}$を
\[ b_n=2^{a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
と定めると,これは初項$[カ][キ][ク]$,公比$\displaystyle \frac{\sqrt{[ケ]}}{[コ]}$の等比数列となる.
(3)数列$\{a_n\}$はある$n$より先は負となる.$a_n$が負となる最初の$n$は$[サ]$である.
東京理科大学 私立 東京理科大学 2015年 第4問
関数$\displaystyle f(x)=\frac{2^x-2^{-x}}{2}$について考える.

(1)$\displaystyle f \left( \log_{\frac{1}{2}} 5 \right)=\frac{[ア][イ]}{[ウ]}$
(2)$\displaystyle f(a)=\frac{4}{3}$をみたす$a$に対して,$2^a=[エ]$
(3)$\displaystyle f(b)=\frac{15}{8}$をみたす$b$に対して,$\displaystyle f(b+\log_2 3)=\frac{[オ][カ][キ]}{[ク][ケ]}$
東京理科大学 私立 東京理科大学 2015年 第2問
$p$を正の定数として,関数$f(x)$を
\[ f(x)=-5x^p \log x \quad (x>0) \]
と定める.$a$は$f^\prime(a)=0$を満たす正の実数とする.ここで,$\log x$は自然対数であり,$e$は自然対数の底を表す.また,$f^\prime(x)$は$f(x)$の導関数である.

(1)$a$の値を$p$を用いて表せ.
(2)不定積分$\int f(x) \, dx$を求め$p$を用いて表せ.
(3)直線$x=a$と$x$軸,および曲線$y=f(x)$の$a \leqq x \leqq 1$の部分で囲まれる部分の面積を$S$とする.このとき,
\[ \lim_{p \to +0}S \]
の値を求めよ.必要ならば,$\displaystyle \lim_{u \to +0} \frac{e^{-\frac{1}{u}}}{u}=0$であることを用いてよい.
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{5}{6}<\log_{10}7<\frac{6}{7}$であることを用いると,$7^{42}$は$[ア]$桁の整数であることがわかる.さらに,$7^2<50$であることと$\displaystyle \log_{10}2>\frac{3}{10}$であることを用いると,$\displaystyle \log_{10}7<\frac{[イ]}{[ウ]}$であることがわかり,これより,$7^{41}$は$[エ]$桁の整数であることがわかる.
(2)$\log_{10}15$に最も近い値は$[あ]$であり,
$\log_{10}17$に最も近い値は$[い]$であり,
$\log_{10}19$に最も近い値は$[う]$である.

ただし,近似値として,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$を用いてよい.
\begin{screen}
$[あ]$,$[い]$,$[う]$の選択肢:

\begin{tabular}{llll}
$\mathrm{(a)} \ 1.13$ \phantom{AAA} & $\mathrm{(b)} \ 1.18$ \phantom{AAA} & $\mathrm{(c)} \ 1.23$ \phantom{AAA} & $\mathrm{(d)} \ 1.28$ \phantom{AAA} \\
$\mathrm{(e)} \ 1.33$ \phantom{AAA} & $\mathrm{(f)} \ 1.38$ \phantom{AAA} & $\mathrm{(g)} \ 1.43$ \phantom{AAA} & $\mathrm{(h)} \ 1.48$ \phantom{AAA}
\end{tabular}

\end{screen}
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
企業$\mathrm{X}$が$n$個の新製品を同時に開発しており,各新製品の開発に成功する確率は$\displaystyle \frac{1}{9}$である.すべての開発の結果が出た後に企業$\mathrm{X}$が存続できるための必要十分条件は,$n$個のうち$1$個以上の新製品の開発に成功していることである.ただし,各新製品の開発は独立な試行であるとする.企業$\mathrm{X}$が$n$個の新製品すべての開発に失敗する確率を$p_n$,また企業$\mathrm{X}$が存続できる確率を$q_n$とする.以下では,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$として計算せよ.

(1)$p_n,\ q_n$をそれぞれ$n$を用いて表せ.
(2)$q_n \geqq 0.9$を満たす最小の自然数$n$を求めよ.
(3)$\displaystyle \frac{k}{1000}<q_{50}<\frac{k+1}{1000}$を満たす自然数$k$を求めよ.
東京理科大学 私立 東京理科大学 2015年 第3問
定数$a$に対し,
\[ f(x)=a \sin 2x-\tan x \quad \left( 0 \leqq x<\frac{\pi}{2} \right) \]
とおく.

(1)$\displaystyle a>\frac{1}{2}$であるとする.実数$\theta$を,$\displaystyle 0<\theta<\frac{\pi}{2}$かつ$f(\theta)=0$を満たすものとするとき,$\cos \theta$を$a$を用いて表せ.
(2)不定積分
\[ \int f(x) \, dx \]
を求めよ.
(3)$\displaystyle \frac{1}{2}<a<1$であるとする.このとき,
\[ \int_0^{\frac{\pi}{4}} |f(x)| \, dx+\log a \]
を$a$の$1$次式で表せ.ただし,$\log$は自然対数を表す.
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。