タグ「対数」の検索結果

22ページ目:全1047問中211問~220問を表示)
三重大学 国立 三重大学 2015年 第1問
以下の問いに答えよ.

(1)$a,\ b,\ c$は正の実数で,$a \neq 1$,$c \neq 1$とするとき,$\displaystyle \log_a b=\frac{\log_c b}{\log_c a}$となることを,対数の定義にもとづいて証明せよ.ただし,必要ならば,$\log_p M^r=r \log_p M$($p>0$,$p \neq 1$,$M>0$,$r$は実数)を用いてよい.
(2)方程式$\log_4 (x+3)=\log_2 x-1$を解け.
(3)方程式$\log_4 (x+k)=\log_2 x-1$が解を持つような実数$k$の範囲を求めよ.
三重大学 国立 三重大学 2015年 第4問
正の実数$a$に対し,$y=a \log x (x>0)$により定まる曲線を$C$とする.$C$上の点$(2,\ a \log 2)$における接線を$\ell$とするとき,$\ell$と$x$軸とのなす角が${30}^\circ$であった.以下の問いに答えよ.

(1)$a$の値を求めよ.
(2)接線$\ell$の方程式,および$\ell$と$x$軸との交点を求めよ.
(3)$\ell$と$C$と$x$軸とで囲まれた図形の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第5問
$c$を実数とし,曲線$y=x^2+c \cdots①$と曲線$y=\log x \cdots②$の共通接線を考える.

(1)共通接線の本数を,実数$c$の値によって答えよ.
(2)共通接線が$1$本であるとき,その接線と$①$,$②$それぞれとの接点を求めよ.
(3)共通接線が$1$本であるとき,$①$,$②$と$x$軸で囲まれる図形の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第5問
$c$を実数とし,曲線$y=x^2+c \cdots①$と曲線$y=\log x \cdots②$の共通接線を考える.

(1)共通接線の本数を,実数$c$の値によって答えよ.
(2)共通接線が$1$本であるとき,その接線と$①$,$②$それぞれとの接点を求めよ.
(3)共通接線が$1$本であるとき,$①$,$②$と$x$軸で囲まれる図形の面積を求めよ.
名古屋大学 国立 名古屋大学 2015年 第3問
$e$を自然対数の底とし,$t$を$t>e$となる実数とする.このとき,曲線$C:y=e^x$と直線$y=tx$は相異なる$2$点で交わるので,交点のうち$x$座標が小さいものを$\mathrm{P}$,大きいものを$\mathrm{Q}$とし,$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta (\alpha<\beta)$とする.また,$\mathrm{P}$における$C$の接線と$\mathrm{Q}$における$C$の接線との交点を$\mathrm{R}$とし,曲線$C$,$x$軸および$2$つの直線$x=\alpha$,$x=\beta$で囲まれる部分の面積を$S_1$,曲線$C$および$2$つの直線$\mathrm{PR}$,$\mathrm{QR}$で囲まれる部分の面積を$S_2$とする.このとき,次の問に答えよ.

(1)$\displaystyle \frac{S_2}{S_1}$を$\alpha$と$\beta$を用いて表せ.
(2)$\displaystyle \alpha<\frac{e}{t},\ \beta<2 \log t$となることを示し,$\displaystyle \lim_{t \to \infty} \frac{S_2}{S_1}$を求めよ.必要ならば,$x>0$のとき$e^x>x^2$であることを証明なしに用いてよい.
茨城大学 国立 茨城大学 2015年 第1問
以下の各問に答えよ.ただし,対数は自然対数であり,$e$は自然対数の底である.

(1)関数$f(x)=x^2 \sqrt{1+\log x}$の$x=e^3$における微分係数$f^\prime(e^3)$を求めよ.
(2)$0 \leqq x \leqq \pi$の範囲において,$2$つの曲線$y=\sin x$と$\displaystyle y=\sin \frac{x}{2}$で囲まれた部分の面積を求めよ.
(3)極限$\displaystyle \lim_{x \to 2}\frac{1}{x^3-8} \int_2^x t^2 \, 2^{t^2} \, dt$を求めよ.
秋田大学 国立 秋田大学 2015年 第2問
次の問いに答えよ.

(1)次の数列$\{a_n\}$の一般項を求めよ.
\[ 4,\ 11,\ 24,\ 43,\ 68,\ 99,\ \cdots \]
(2)次の方程式を解け.

(i) $\log_2 x=\log_4 5$
(ii) $\log_2 x^2=5$

(3)$f(x)=x^3+3x^2-45x+41$とする.$-8 \leqq x \leqq 8$における関数$y=f(x)$の最大値と最小値を求めよ.
秋田大学 国立 秋田大学 2015年 第1問
次の問いに答えよ.

(1)次の数列$\{a_n\}$の一般項を求めよ.
\[ 4,\ 11,\ 24,\ 43,\ 68,\ 99,\ \cdots \]
(2)次の方程式を解け.

(i) $\log_2 x=\log_4 5$
(ii) $\log_2 x^2=5$

(3)$f(x)=x^3+3x^2-45x+41$とする.$-8 \leqq x \leqq 8$における関数$y=f(x)$の最大値と最小値を求めよ.
岩手大学 国立 岩手大学 2015年 第1問
次の問いに答えよ.

(1)$2$次方程式$3x^2+7x+5=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\displaystyle \frac{\alpha^2}{\beta}+\frac{\beta^2}{\alpha}$の値を求めよ.
(2)方程式$\displaystyle \log_9 (x+4)=\log_3 (2x-7)+\log_5 \frac{1}{5 \sqrt{5}}$を解け.
(3)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$,$\angle \mathrm{B}$の大きさをそれぞれ$A,\ B$で表すとき,$\displaystyle \cos A=\frac{3}{5}$,$\displaystyle \cos B=\frac{2}{3}$であるとし,さらに辺$\mathrm{AB}$の長さは$\displaystyle \frac{38}{5}$であるとする.このとき,$\triangle \mathrm{ABC}$の外接円の半径を求めよ.
茨城大学 国立 茨城大学 2015年 第3問
曲線$C_1:y=\log x (x>0)$と曲線$C_2:y=-x^2+a$を考える.ただし,$\log$は自然対数を表す.以下の各問に答えよ.

(1)曲線$C_1$上の点$\mathrm{P}(t,\ \log t)$における法線$\ell$の方程式を求めよ.ただし,曲線上の点$\mathrm{P}$における法線とは,点$\mathrm{P}$を通り,点$\mathrm{P}$における接線に垂直に交わる直線のことである.
(2)$(1)$で求めた法線$\ell$と曲線$C_2$が接するとき,$a$の値を$t$を用いて表せ.また,$C_2$と$\ell$が接する点$\mathrm{Q}$の座標を$t$を用いて表せ.
(3)$(2)$で求めた点$\mathrm{Q}$を通り$y$軸に平行な直線,点$\mathrm{P}$を通り$y$軸に平行な直線,$x$軸,および曲線$C_1$で囲まれた図形の面積$S(t)$を求めよ.
(4)$(3)$で求めた$S(t)$の極値を求めよ.
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。