タグ「対数」の検索結果

102ページ目:全1047問中1011問~1020問を表示)
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)$2$次関数$y=(x+1)^2+[ア]$のグラフを$x$軸方向に$[イ]$,$y$軸方向に$-3$だけ平行移動すると,$2$次関数$y=x^2-6x+8$のグラフになる.
(2)$x^2-4x+1=0$の解のひとつを$\alpha$とするとき
\[ \alpha+\frac{1}{\alpha}=[ウ],\quad \alpha^2+\frac{1}{\alpha^2}=[エ] \]
である.
(3)放物線$C:y=-2x^2+10x-8$と$x$軸で囲まれた部分の面積$S$は,直線$y=kx-k$($k$は定数)で$2$等分される.このとき,$S=[オ]$であり,$k=[カ]$である.
(4)実数$x,\ t$に対して
\[ \log_2(x+2^t)=2t-3 \]
が成り立つとする.$t=4$のとき$x$の値は$[キ]$であり,$x=-2$のとき$t$の値は$[ク]$である.
(5)三角形$\mathrm{ABC}$において
\[ \sin^2 A+\sin^2 B=\sin^2 C \quad \text{かつ} \quad 5 \angle \mathrm{A}=\angle \mathrm{B} \]
であるとき,$\angle \mathrm{A}=[ケ]^\circ$であり,分母を有理化すると$\tan^2 A=[コ]$である.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)分数式$\displaystyle \frac{x^3+2x^2+4x-7}{x^2+2x-3}$を約分して既約分数にすると$[ア]$である.また,等式$ax(x-1)+b(x-1)(x-2)+c(x-3)=3x^2+2x+1$が$x$についての恒等式となるように$a,\ b,\ c$の値を定めると,$(a,\ b,\ c)=[イ]$である.
(2)$3^{30}$の桁数を求めると$[ウ]$である.また,$\displaystyle \left( \frac{1}{9} \right)^{40}$を小数で表すと小数第$n$位に初めて$0$でない数が現れ,$n=[エ]$である.ただし,$\log_{10}3=0.4771$とする.
(3)$2$次関数$f(x)=ax^2+bx+c$は$x=1$で最小値$-1$をとる.$f(x)=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\alpha^4+\beta^4$を$a$で表すと$\alpha^4+\beta^4=[オ]$である.また,$\alpha^4+\beta^4>6$を満たす$a$の値の範囲を求めると$[カ]$である.
(4)$a \geqq 0$とする.$2$点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(a,\ 3)$からの距離の比が$2:1$である点$\mathrm{P}$の描く図形の方程式は$[キ]$である.また,この図形が直線$y=x+2$と$2$つの共有点$\mathrm{C}$,$\mathrm{D}$をもち,線分$\mathrm{CD}$の長さが$2 \sqrt{2}$であるとき,$a$の値を求めると$a=[ク]$である.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle \frac{\sqrt{7}+1}{\sqrt{7}-2}$の整数部分を$a$,小数部分を$b$とするとき,$(a,\ b)=[ア]$であり,$\displaystyle \frac{1}{a}+\frac{1}{b}$の小数部分の値は$[イ]$である.
(2)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=10$,$\mathrm{BC}=12$,$\mathrm{CA}=8$とし,$\angle \mathrm{A}$の二等分線と$\mathrm{BC}$との交点を$\mathrm{D}$とするとき,$\mathrm{AD}=[ウ]$である.また,$\mathrm{AD}$を軸とし,$\mathrm{AC}$を$\mathrm{AB}$に重ねるように$\triangle \mathrm{ADC}$を折り返すとき,$\mathrm{C}$が$\mathrm{AB}$上に重なる点を$\mathrm{E}$とする.このとき,$\sin \angle \mathrm{BDE}=[エ]$である.
(3)$x>0,\ y>0$とする.$\displaystyle \left( x+\frac{5}{y} \right) \left( y+\frac{2}{x} \right)$は,$xy=[オ]$のとき最小値$[カ]$をとる.
(4)展開図が半径$r$の円と周の長さが$k$の扇形からなる円錐を考える.このとき円錐の高さは$[キ]$である.また,$k$を一定とすると,$r=[ク]$のとき円錐の表面積が最大になる.ただし,円周率を$\pi$とする.
(5)実数$x,\ y,\ z (xyz \neq 0)$について等式$3^x=2^y=\sqrt{6^{3z}}$が成立しているとき,$x$を$z$で表すと$[ケ]$であり,$\displaystyle \frac{1}{x}+\frac{1}{y}$を対数を用いないで表すと$[コ]$である.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)不等式$\log_2 (x^2-3x+6)>1+\log_2x$を満たす$x$の範囲は$[ア]$と$[イ]$である.
(2)実数係数の$3$次方程式$x^3-4x^2+ax-8=0$が,解$1+bi$($b$は正の実数)をもつとき,$a=[ウ]$,$b=[エ]$である.
(3)$\angle \mathrm{B}$が直角の直角三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$の大きさを$15^\circ$,$\mathrm{AC}$の長さを$b$とする.この三角形の面積を$b$で表すと$[オ]$であり,$\mathrm{BC}$の長さは$[カ]$である.
(4)円$x^2+y^2=1$の上を動く点$\mathrm{A}$と点$\mathrm{B}(0,\ -3)$,点$\mathrm{C}(4,\ 0)$の$3$点を頂点とする三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.$\mathrm{G}$の軌跡は方程式$[キ]$で表され,$\mathrm{A}$と$\mathrm{G}$の距離の最大値は$[ク]$である.
(5)整式$f(x)$が,$\displaystyle \int_0^x f(t) \, dt+\int_0^1 xf(t) \, dt=x^2+2x+a$($a$は実数)を満たすとき,$a=[ケ]$,$f(x)=[コ]$である.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$のとき,関数$y=\cos 2\theta-2 \sin \theta$の最大値とそのときの$\theta$の値を求めると$(y,\ \theta)=[ア]$であり,最小値とそのときの$\theta$の値を求めると$(y,\ \theta)=[イ]$である.
(2)実数$a,\ b$を係数とする方程式$x^3+ax^2+bx-4=0$の解の$1$つが$1-i$であるとき,残りの解のうち実数解を求めると$x=[ウ]$であり,$a,\ b$の値を求めると$(a,\ b)=[エ]$である.ただし,$i$は虚数単位である.
(3)$x$についての方程式$9^x-a \cdot 3^x+a^2-a=0$が$2$つの異なる実数解をもつとき,定数$a$のとりうる値の範囲は$[オ]$である.また,$x \geqq \sqrt{2}$,$y \geqq 1$,$x^2y=4$のとき,$(1+\log_2x)(\log_2y)$が最大値をとる$x,\ y$の値を求めると,$(x,\ y)=[カ]$である.
(4)座標平面上に中心が原点$\mathrm{O}$で半径が$3$の円$C$と,傾きが負で点$\mathrm{A}(5,\ 0)$を通る直線$\ell$を考える.$C$と$\ell$は$2$点$\mathrm{P}$,$\mathrm{Q}$($\mathrm{AP}<\mathrm{AQ}$)で交わるとする.$\angle \mathrm{POQ}$を$\theta$とするとき,$\triangle \mathrm{PQO}$の面積$S_1$を$\theta$を用いて表すと$S_1=[キ]$である.また,点$\mathrm{B}$の座標を$(-3,\ 0)$とするとき,$\triangle \mathrm{PQB}$の面積$S_2$の最大値は$[ク]$である.
学習院大学 私立 学習院大学 2010年 第2問
不等式
\[ \frac{1}{\log_27}+\frac{1}{\log_37}+\frac{1}{\log_m7}<4 \]
を満たす最大の自然数$m$を求めよ.
北海道科学大学 私立 北海道科学大学 2010年 第15問
正の数$x,\ y$に対して
\[ \log_2x+\log_2y=4,\quad 2^x \times 2^y=1024 \]
であるとき,次の値を求めよ.

(1)$xy=[ ]$
(2)$x+y=[ ]$
北海道科学大学 私立 北海道科学大学 2010年 第16問
$2$次関数
\[ f(x)=x^2+2x+9 \]
の最小値は$[ ]$である.したがって,関数
\[ g(x)=\log_2 (x^2+2x+9) \]
の最小値は$[ ]$である.
東北工業大学 私立 東北工業大学 2010年 第3問
次の問いに答えよ.

(1)$\displaystyle \left( 2^{\frac{3}{2}}-2^{-\frac{1}{2}} \right)^2=\frac{[ ]}{2}$
(2)方程式$3^{2x-5}=\sqrt[5]{9}$の解は,$\displaystyle x=\frac{[ ]}{10}$である.
(3)方程式$\displaystyle \log_{16}(x+5)=\frac{3}{2}$の解は$x=[ ]$である.
(4)不等式$\log_{\frac{1}{2}} (x-3)>-3$の解は,$[ ]<x<[ ]$である.
愛知工業大学 私立 愛知工業大学 2010年 第1問
次の$[ ]$を適当に補え.

(1)$x^2-2y^2+xy+5x+y+6$を因数分解すると$[ ]$となる.
(2)平面上に半径$1$と半径$2$の円がある.共通接線がちょうど$3$本引けるとき,この$3$本の接線によって囲まれる三角形の面積は$[ ]$である.
(3)$2$つの平面ベクトルを$\overrightarrow{a}=(3,\ -1)$,$\overrightarrow{b}=(0,\ 2)$とする.$s,\ t$が$s+t=3 (0 \leqq s \leqq 3)$をみたすとき,ベクトル$s \overrightarrow{a}+t \overrightarrow{b}$の大きさの最大値は$[ ]$,最小値は$[ ]$である.
(4)$y=\sin^2 x+4 \sin x \cos x+3 \cos^2 x$を$\sin 2x$と$\cos 2x$の式で表すと$y=[ ]$となり,$0 \leqq x \leqq \pi$における$y$の値の範囲は$[ ]$である.
(5)ある粒子を$1$枚で$50 \, \%$遮断できる繊維がある.この繊維を少なくとも$[ ]$枚重ねれば,この粒子を$99 \, \%$以上遮断できる.ただし,$\log_{10}2=0.3010$とする.
(6)$\displaystyle S_n=\frac{\left( \sum_{k=1}^n k \right)^2}{\sum_{k=1}^n k^2}$のとき,$S_3=[ ]$であり,$\displaystyle \lim_{n \to \infty} \frac{S_n}{n}=[ ]$である.
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。