タグ「対数」の検索結果

100ページ目:全1047問中991問~1000問を表示)
九州工業大学 国立 九州工業大学 2010年 第4問
次に答えよ.ただし,対数は自然対数とする.必要ならば,$1.09<\log 3<1.10$を用いてよい.

(1)すべての$x>0$に対して,不等式
\[ x-\frac{x^2}{2} < \log (1+x) \]
が成り立つことを示せ.
(2)関数$\displaystyle f(x)=x-\frac{x^2}{3}-\log (1+x)$の$0 \leqq x \leqq 2$における最大値,および最小値を求めよ.
(3)方程式$\displaystyle x-\frac{x^2}{3}=\log (1+x)$は$0<x<2$の範囲に解を1つだけもつことを示せ.
(4)(3)における解を$\alpha \ (0<\alpha<2)$とする.曲線$\displaystyle y=x-\frac{x^2}{3}$と曲線$y=\log (1+x)$で囲まれた図形($0 \leqq x \leqq \alpha$の部分)の面積を$S$とする.また,曲線$\displaystyle y=x-\frac{x^2}{3}$,$y=\log (1+x)$と直線$x=2$で囲まれた図形($\alpha \leqq x \leqq 2$の部分)の面積を$T$とする.$S$と$T$の大小を比較せよ.
鹿児島大学 国立 鹿児島大学 2010年 第4問
$a$を0以上の実数とし,$x>-1$で定義された関数
\[ f(x)=2x^2+(1-a^2) \log (x+1) \]
について,次の各問いに答えよ.

(1)方程式$f^\prime(x)=0$が$x>-1$で異なる2つの実数解をもつような定数$a$の値の範囲を求めよ.
(2)$a$が(1)で求めた範囲にあるとき,関数$f(x)$の増減を調べ,極値を求めよ.
(3)$a$が(1)で求めた範囲にあるとき,関数$f(x)$の極小値は$\displaystyle \frac{1-2 \log 2}{2}$より大きいことを証明せよ.
小樽商科大学 国立 小樽商科大学 2010年 第1問
次の[ ]の中を適当に補いなさい.

(1)不等式$4 \log_{\frac{1}{4}}(x-4)+\log_2(x-2)>0$を解くと[ ].
(2)下図において,地点Aから地点Bへの最短経路の総数は[ ].
\setlength\unitlength{1truecm}

(図は省略)

(3)$2010!=2^nm \ (m \text{は奇数})$のとき,自然数$n$を求めると$n=[ ]$.
愛知教育大学 国立 愛知教育大学 2010年 第6問
次の問いに答えよ.

(1)曲線$y=\log x$上の点$\mathrm{A}(1,\ 0)$における接線$\ell_1$の方程式を求めよ.
(2)曲線$y=\log x$上の点$\mathrm{B}(2,\ \log 2)$における接線$\ell_2$の方程式を求めよ.
(3)$f(x)=ax^3+bx^2+cx+d$とおく.曲線$y=f(x)$は2点$\mathrm{A},\ \mathrm{B}$を通り,さらにこの2点での接線がそれぞれ$\ell_1,\ \ell_2$と一致する.このときの$a,\ b,\ c,\ d$の値を求めよ.
(4)(3)で求めた$f(x)$に対して$g(x)=f(x)-\log x$とおく.関数$y=g(x) \ (1 \leqq x \leqq 2)$の最大値を与える$x$の値を求めよ.ただし$0.69<\log 2<0.70$であることを用いてよい.
九州工業大学 国立 九州工業大学 2010年 第1問
$a$を正の実数とする.また,対数は自然対数,$e$は自然対数の底を表す.以下の問いに答えよ.

(1)不定積分$\displaystyle \int \log (ax) \, dx$を求めよ.
(2)$0<x<e$の範囲で曲線$y=\log (ax)$と直線$y=1$とが交わるように,$a$の値の範囲を定めよ.
(3)$a$の値が(2)で求めた範囲にあるとする.座標平面において,曲線$y=\log (ax)$と2直線$y=0,\ x=e$とで囲まれた図形のうち,$y \leqq 1$の部分の面積を$S_1$,$y \geqq 1$の部分の面積を$S_2$とする.$S=S_1-S_2$を$a$を用いて表せ.
(4)$a$の値が(2)で求めた範囲にあるとする.$S$の最大値とそのときの$a$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第4問
次の問いに答えよ.

(1)関数$\displaystyle y=\log_{\frac{1}{3}} \left( \frac{x}{3} \right) \cdot \log_{\frac{1}{3}}(3x)$を考える.

(i) $t=\log_{\frac{1}{3}}x$とおくとき,$y$を$t$を用いて表せ.
(ii) $\displaystyle \frac{1}{9} \leqq x \leqq 3$のとき,$y$の最大値と最小値を求めよ.

(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,関数$y=2 \sin^2 x-\sin x \cos x+3 \cos^2 x$の最大値と最小値を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第3問
座標平面上に点$\mathrm{B}_n(b_n,\ 0)$,$\displaystyle \mathrm{C}_n \left( \frac{b_n+b_{n+1}}{2},\ \frac{1}{2^{n-1}} \right) \ (n=1,\ 2,\ 3,\ \cdots)$がある.ただし,$b_n \leqq b_{n+1}$である.$2$点$\mathrm{B}_n$,$\mathrm{B}_{n+1}$間の距離を$\mathrm{B}_n \mathrm{B}_{n+1}$で表すとき,$\displaystyle \mathrm{B}_{n+1} \mathrm{B}_{n+2}=\frac{1}{2} \mathrm{B}_n \mathrm{B}_{n+1}$が成立している.$b_1=0,\ b_2=1$のとき,次の問いに答えよ.

(1)$d_n=\mathrm{B}_n \mathrm{B}_{n+1}$とおくとき,$d_n$を$n$を用いて表せ.
(2)$b_n$を$n$を用いて表せ.
(3)点$\mathrm{C}_n \ (n=1,\ 2,\ 3,\ \cdots)$は同一直線上にあることを示せ.
(4)$\log_{10}2=0.3010$として,$b_n<1.99$をみたす最大の自然数$n$を求めよ.
山梨大学 国立 山梨大学 2010年 第5問
関数$f(x)$を$f(x)=\log (x+1)+\sin ax$と定義する.ただし,$x \geqq 0$であり,$a$は正の定数である.

(1)$f(e-1)=0$を満たす最も小さい$a$の値を求めよ.
(2)(1)で求めた$a$の値を使って,定積分$\displaystyle \int_0^{\frac{2(e-1)}{3}}f(x) \, dx$を求めよ.
(3)$\displaystyle a=\frac{2\pi}{e-1}$とするとき,方程式$f(x)=0$は$\displaystyle 0<x<\frac{3(e-1)}{4}$の範囲に解を持つことを証明せよ.
山梨大学 国立 山梨大学 2010年 第1問
次の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{a}=(2,\ 1)$,$\overrightarrow{b}=(1,\ 3)$のなす角$\theta$を求めよ.
(2)放物線$y=-x^2+4x+8$と$x$軸とで囲まれた図形に内接し,$x$軸上に$2$つの頂点をもつ長方形の面積の最大値を求めよ.
(3)整数$5^{2010}$の桁数を求めよ.ただし,$\log_{10}2=0.3010$とする.
(4)関数$y=\sin x-\cos x+\sqrt{2} \ (0 \leqq x \leqq 2\pi)$の最大値と最小値を求めよ.
東京海洋大学 国立 東京海洋大学 2010年 第5問
次の問いに答えよ.

(1)$x>0$で定義された関数$\displaystyle f(x)=\frac{(\log x)^2}{x}$の増減を調べ,極値を求めよ.
(2)曲線$y=f(x)$と曲線$\displaystyle y=\frac{1}{x}$で囲まれた図形の面積を求めよ.
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。