タグ「対応」の検索結果

4ページ目:全36問中31問~40問を表示)
山形大学 国立 山形大学 2011年 第2問
媒介変数$t$を用いて$x=t^2,\ y=t^3$と表される曲線を$C$とする.ただし,$t$は実数全体を動くとする.また,実数$a \ (a \neq 0)$に対して,点$(a^2,\ a^3)$における$C$の接線を$\ell_a$とする.このとき,次の問に答えよ.

(1)$\ell_a$の方程式を求めよ.
(2)曲線$C$の$0 \leqq t \leqq 1$に対応する部分の長さを求めよ.ただし,曲線$x=f(t),\ y=g(t)$の$\alpha \leqq t \leqq \beta$に対応する部分の長さは$\displaystyle \int_{\alpha}^{\beta}\sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \, dt$であたえられる.
(3)曲線$C$と直線$\ell_1$で囲まれた図形の面積を求めよ.
(4)曲線$C$と直線$\ell_1$で囲まれた図形を$y$軸の周りに1回転してできる回転体の体積を求めよ.
山形大学 国立 山形大学 2011年 第4問
媒介変数$t$を用いて$x=t^2,\ y=t^3$と表される曲線を$C$とする.ただし,$t$は実数全体を動くとする.また,実数$a \ (a \neq 0)$に対して,点$(a^2,\ a^3)$における$C$の接線を$\ell_a$とする.このとき,次の問に答えよ.

(1)$\ell_a$の方程式を求めよ.
(2)曲線$C$の$0 \leqq t \leqq 1$に対応する部分の長さを求めよ.ただし,曲線$x=f(t),\ y=g(t)$の$\alpha \leqq t \leqq \beta$に対応する部分の長さは$\displaystyle \int_{\alpha}^{\beta}\sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \, dt$であたえられる.
(3)曲線$C$と直線$\ell_1$で囲まれた図形の面積を求めよ.
(4)曲線$C$と直線$\ell_1$で囲まれた図形を$y$軸の周りに$1$回転してできる回転体の体積を求めよ.
埼玉大学 国立 埼玉大学 2010年 第4問
平面上を運動する点Pの時刻$t$における座標$(x,\ y)$が
\[ x=2t-t^2,\quad y=1-t^2 \quad (0 \leqq t \leqq 1) \]
で与えられている.このとき,点Pの描く曲線を$C$とおく.

(1)$0<t<1$の範囲で,点Pの速さ(速度の大きさ)が最小になる時刻$t$を求めよ.
(2)(1)で求めた時刻$t$に対応する$C$上の点における接線$\ell$の方程式を求めよ.
(3)接線$\ell$と曲線$C$は,接点以外に共有点を持たないことを示せ.
(4)曲線$C$,接線$\ell$および$y$軸で囲まれる図形の面積を求めよ.
三重大学 国立 三重大学 2010年 第3問
$k$は正の定数とし,$f(x)=e^{k \sin x}\cos x$とする.曲線$C$を,$y=f(x)$のグラフの$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$に対応する部分とする.

(1)$t$の関数$g(t)$は,$f^{\prime}(x)=e^{k \sin x}g(\sin x)$を満たすものとする.このとき$g(t)$を求め,さらに$-1 \leqq t \leqq 1$の範囲における$g(t)=0$の解を求めよ.
(2)$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$において$f(x)$が最大となるときの$f(x)^2$の値を求めよ.
(3)曲線$C$と$x$軸に囲まれた部分の面積を求めよ.
三重大学 国立 三重大学 2010年 第3問
$y=\sin 2x+\cos x$のグラフの$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$に対応する部分を$C$とする.また点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$におけるグラフの接線を$\ell$とする.このとき次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲で曲線$C$が$\ell$の上側になる部分はないことを示せ.
(3)曲線$C$,直線$\ell$および$y$軸で囲まれる図形の面積を求めよ.
三重大学 国立 三重大学 2010年 第4問
$\displaystyle y=\sin 2x-x+\frac{\pi}{2}$のグラフの$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$に対応する部分を$C$とする.また点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$におけるグラフの接線を$\ell$とする.このとき次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲で曲線$C$が$\ell$の上側になる部分はないことを示せ.
(3)曲線$C$,直線$\ell$および$y$軸で囲まれる図形の面積を求めよ.
スポンサーリンク

「対応」とは・・・

 まだこのタグの説明は執筆されていません。