タグ「実数解」の検索結果

9ページ目:全301問中81問~90問を表示)
東京女子大学 私立 東京女子大学 2015年 第5問
$x$についての方程式
\[ \log_2 x=\log_4 (8x-a-6) \]
が異なる$2$つの実数解を持つとき,定数$a$の値の範囲を求めよ.
東京都市大学 私立 東京都市大学 2015年 第1問
次の問に答えよ.

(1)$0 \leqq \theta<2\pi$のとき,方程式$\displaystyle \sin \theta-\cos \theta=\frac{1}{\sqrt{2}}$を解け.
(2)$a$を実数とする.$x$の$4$次方程式$(x^2+ax+1)(x^2+x+a)=0$が異なる$2$つの実数解と異なる$2$つの虚数解をもつような$a$の範囲を求めよ.
(3)$x^3+2yx^2-y^2x-2y^3$を因数分解せよ.
西南学院大学 私立 西南学院大学 2015年 第2問
$3$次関数$f(x)=-4x^3+15x^2+18x+a$は,$\displaystyle x=\frac{[ケコ]}{[サ]}$で極小値,$x=[シ]$で極大値をとる.

また,方程式$f(x)=0$の異なる$3$つの実数解のうち$2$つが負となるような定数$a$の範囲は,$\displaystyle [ス]<a<\frac{[セソ]}{[タ]}$である.
大阪工業大学 私立 大阪工業大学 2015年 第4問
関数$f(x)=-x^2+2ax-2a^2+a+2$について,次の問いに答えよ.ただし,$a$は実数とする.

(1)$2$次方程式$f(x)=0$が実数解をもつような$a$の値の範囲を求めよ.
(2)定積分$\displaystyle I=\int_0^a f(x) \, dx$を$a$の式で表せ.
(3)$a$の値が$(1)$で求めた範囲にあるとき,$(2)$で定めた$I$が最小となるような$a$の値を求めよ.
東京経済大学 私立 東京経済大学 2015年 第1問
$x$についての$2$次方程式$x^2-2kx+k^2+k-6=0$が異なる$2$つの実数解$\alpha,\ \beta$をもつとする.このとき,

(1)$\alpha,\ \beta$がともに正となるような定数$k$の値の範囲は,$[ア]<k<[イ]$である.
(2)$\alpha$が正,$\beta$が負となるような定数$k$の値の範囲は,$-[ウ]<k<[エ]$である.
九州産業大学 私立 九州産業大学 2015年 第3問
$3$次関数$f(x)$は$x=-1$と$x=-5$で極値をとり,$f(0)=14$,$f(1)=64$とする.

(1)$f(x)=[ア]x^3+[イウ]x^2+[エオ]x+[カキ]$であり,
$f^\prime(x)=[ク]x^2+[ケコ]x+[サシ]$である.
(2)$f(x)$の極大値は$[スセ]$であり,極小値は$[ソ]$である.
(3)方程式$f(x)=0$の異なる実数解の個数は$[タ]$個である.
(4)$f^\prime(x)=g(x)$とおく.曲線$y=g(x)$と$x$軸とで囲まれる図形$A$の面積は$[チツ]$である.図形$A$が直線$x=a$によって$2$つに分割され,左側と右側の部分の面積の比が$5:27$であるならば,$a$の値は$[テト]$である.
東京都市大学 私立 東京都市大学 2015年 第1問
次の$[ ]$を埋めよ.

(1)$\log_2 104+\log_2 (27+2+2)-\log_2(2015 \times 2 \div 10)$の値は$[ア]$である.
(2)実数$x,\ y$が等式$(2+xi)(5+i)=3y-8i$を満たすとき,$x=[イ]$,$y=[ウ]$である.ただし,$i$は虚数単位とする.
(3)整式$P(x)=x^4$を$x-2$で割ると商が$[エ]$,余りが$[オ]$となる.$P(x)$を$(x-2)^2$で割ると商が$[カ]$,余りが$[キ]$となる.
(4)$3$次方程式$\displaystyle \frac{2}{3}x^3-ax^2+a=0$が異なる$3$個の実数解をもつとき,実数の定数$a$の値の範囲は$[ク]$である.
(5)自然数$n$に対して$a_n=2^{-n}$,$\displaystyle b_n=\int_{a_{n+1}}^{a_n} x \, dx$,$\displaystyle c_n=\sum_{k=1}^n b_k$と定義する.$b_n$を$n$の式で表すと$b_n=[ケ]$となるので,数列$\{b_n\}$は初項$[コ]$,公比$[サ]$の等比数列といえる.また,$c_n$を$n$の式で表すと$c_n=[シ]$となるので,数列$\{c_n\}$の和$\displaystyle S_n=\sum_{k=1}^n c_k$を$n$の式で表すと$\displaystyle S_n=[ス]$となる.
(6)$1$個のさいころを$4$回続けて投げるとする.$4$回とも同じ目が出る確率は$[セ]$であり,$1$から$4$までの目がそれぞれ$1$回ずつ出る確率は$[ソ]$である.また,出る目が$1$と$2$の$2$種類になる確率は$[タ]$であり,出る目が$1$から$6$までのいずれか$2$種類になる確率は$[チ]$である.
(7)$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(6,\ 3)$,$\mathrm{B}(2,\ 4)$を頂点とする$\triangle \mathrm{OAB}$に対し,$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$とする.実数$s,\ t$が条件$\displaystyle 0 \leqq s+t \leqq \frac{1}{2}$,$s \geqq 0$,$t \geqq 0$を満たしながら動くとき,点$\mathrm{P}$の存在範囲が$\triangle \mathrm{OA}^\prime \mathrm{B}^\prime$の周および内部であるとすると,点$\mathrm{A}^\prime$の座標は$[ツ]$,点$\mathrm{B}^\prime$の座標は$[テ]$である.ただし,点$\mathrm{A}^\prime$は直線$\mathrm{OA}$上,点$\mathrm{B}^\prime$は直線$\mathrm{OB}$上にあるものとする.また,$3$点$\mathrm{O}(0,\ 0)$,$\displaystyle \mathrm{C} \left( 9,\ \frac{9}{2} \right)$,$\mathrm{D}(3,\ 6)$を頂点とする$\triangle \mathrm{OCD}$に対し,$\overrightarrow{\mathrm{OQ}}=s^\prime \overrightarrow{\mathrm{OC}}+t^\prime \overrightarrow{\mathrm{OD}}$とする.点$\mathrm{Q}$の存在範囲が点$\mathrm{P}$の存在範囲と一致するとき,実数$s^\prime$と$t^\prime$の満たす条件は$[ト]$である.
(8)絶対値の記号を用いずに関数$f(x)=|3x^2-3x|-1$を表すと,$0 \leqq x \leqq 1$のとき$f(x)=[ナ]$となり,$x \leqq 0$,$1 \leqq x$のとき$f(x)=[ニ]$となる.したがって,定積分$\displaystyle \int_0^a f(x) \, dx$の値は,$0 \leqq a \leqq 1$のとき$[ヌ]$,$1 \leqq a$のとき$[ネ]$となる.
広島女学院大学 私立 広島女学院大学 2015年 第2問
次の問いに答えよ.

(1)関数$y=ax+b (-1 \leqq x \leqq 2)$の値域が$1 \leqq y \leqq 7$となるような定数$a,\ b$の値を求めよ.ただし,$a>0$とする.
(2)次の$2$次関数の頂点の座標を求めよ.

\mon[$①$] $y=2x^2+12x+16$
\mon[$②$] $y=-2x^2+4x+3$

(3)$2$次方程式$x^2-2mx+4m-3=0$が異なる$2$つの実数解を持たない定数$m$の範囲を求めよ.
崇城大学 私立 崇城大学 2015年 第2問
$k$を定数とする.関数$f(x)$は,条件$f^\prime(x)=12x^2-2x-2$,$f(0)=k$を満たしている.次の各問に答えよ.

(1)$f(x)$の極値を$k$を用いて表せ.
(2)方程式$f(x)=0$の異なる実数解の個数を,$k$の値によって分類せよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2015年 第1問
以下の$(1)$~$(4)$の$[$1$]$~$[$4$]$に適切な値を答えなさい.ただし,$e$は自然対数の底とする.

(1)$A=e^2$とするとき,
\[ 8 \left( 1+\cos^3 \frac{\pi}{18} \right) \log_A e-\frac{3}{2} \left( 1+\cos \frac{\pi}{18} \right) \log_e A=[$1$] \]
である.
(2)$b$を正の定数,$x$を正の実数とする.方程式$\log_e x=bx$が異なる$2$つの実数解をもつのは$0<b<[$2$]$のときである.
(3)数列$\{c_n\} (n=1,\ 2,\ 3,\ \cdots)$を,初項$1$,公差$2$の等差数列とする.数列$\{c_n\}$の初項から第$n$項までの和$S_n$に対して$T_n=\log_e S_n$,$U_n=e^{T_n}$と定義する.数列$\{U_n\}$の初項から第$24$項までの和の値は$[$3$]$となる.

(4)定積分$\displaystyle \int_0^D \frac{2e^x}{2e^x+3} \, dx$の値は$[$4$]$である.ただし,$D=\log_e 3$とする.
スポンサーリンク

「実数解」とは・・・

 まだこのタグの説明は執筆されていません。