タグ「実数解」の検索結果

29ページ目:全301問中281問~290問を表示)
山口大学 国立 山口大学 2010年 第2問
次の初項と漸化式で定まる数列$\{a_n\}$を考える.
\[ a_1=\frac{1}{2},\ a_{n+1}=e^{-a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
ここで,$e$は自然対数の底で,$1<e<3$である.このとき,次の問いに答えなさい.

(1)すべての自然数$n$について$\displaystyle \frac{1}{3}<a_n<1$が成り立つことを示しなさい.
(2)方程式$x=e^{-x}$はただ1つの実数解をもつことと,その解は$\displaystyle \frac{1}{3}$と1の間にあることを示しなさい.
(3)関数$f(x)=e^{-x}$に平均値の定理を用いることによって,次の不等式が成り立つことを示しなさい.
\begin{align}
\frac{1}{3} \text{と1との間の任意の実数}x_1,\ x_2 \text{について,} \nonumber \\
|f(x_2)-f(x_1)| \leqq e^{-\frac{1}{3}} |x_2-x_1| \nonumber
\end{align}
(4)数列$\{a_n\}$は,方程式$x=e^{-x}$の実数解に収束することを示しなさい.
山形大学 国立 山形大学 2010年 第4問
関数$f(x)$は,すべての実数$x$に対して$f(x+2\pi)=f(x)$を満たす連続な関数とし,$\displaystyle \int_0^{2\pi} f(t) \, dt>0$とする.さらに
\[ g(x)=x^3+(3x^2-1) \int_0^\pi f(2t+x) \, dt \]
とする.このとき,次の問に答えよ.

(1)すべての実数$a$に対して$\displaystyle \int_0^a f(t) \, dt=\int_{2 \pi}^{a+2\pi}f(t) \, dt$が成り立つことを示せ.
(2)すべての実数$a$に対して$\displaystyle \int_a^{a+2\pi} f(t) \, dt=\int_0^{2\pi}f(t) \, dt$が成り立つことを示せ.
(3)関数$g(x)$は3次関数であることを示せ.
(4)関数$g(x)$の極大値と極小値を$\displaystyle c=\int_0^{2\pi}f(t) \, dt$を用いて表せ.
(5)方程式$g(x)=0$の異なる実数解がちょうど2個のとき,$c$の値を求めよ.
愛媛大学 国立 愛媛大学 2010年 第9問
$n$を自然数とし,集合$A,\ B$を
\begin{align}
A= \{ \ a \;|\; a & \text{\ は条件(★)をみたす自然数} \} \nonumber \\
B= \{ \ a \;|\; a & \text{\ は条件(☆)をみたす自然数} \} \nonumber
\end{align}
で定める.ただし,条件(★),(☆)は次で与えられるとする.

\mon[(★)] $2$次方程式$x^2-ax+2^n=0$は異なる$2$つの実数解$\alpha,\ \beta$をもち,$\alpha-\beta$は整数である.
\mon[(☆)] $2$次方程式$x^2-ax+2^n=0$は異なる$2$つの整数解$\alpha,\ \beta$をもつ.


(1)$2$つの集合$A,\ B$について,$A=B$が成り立つことを証明せよ.
(2)次の問いに答えよ.

(i) $n=1,\ 2$のそれぞれの場合について,集合$A$を,要素を書き並べて表せ.
(ii) 集合$A$の要素のうち,最大の数を求めよ.
(iii) 集合$A$のすべての要素の和を求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第4問
$a$を0以上の実数とし,$x>-1$で定義された関数
\[ f(x)=2x^2+(1-a^2) \log (x+1) \]
について,次の各問いに答えよ.

(1)方程式$f^\prime(x)=0$が$x>-1$で異なる2つの実数解をもつような定数$a$の値の範囲を求めよ.
(2)$a$が(1)で求めた範囲にあるとき,関数$f(x)$の増減を調べ,極値を求めよ.
(3)$a$が(1)で求めた範囲にあるとき,関数$f(x)$の極小値は$\displaystyle \frac{1-2 \log 2}{2}$より大きいことを証明せよ.
滋賀医科大学 国立 滋賀医科大学 2010年 第1問
次の問いに答えよ.

(1)$y=|x^2-1|$のグラフを描け.
(2)$a,\ b$を実数とする.$x$についての方程式
\[ |x^2-1|-ax-b=0 \]
が異なる4つの実数解を持つような点$(a,\ b)$の範囲を図示せよ.
(3)(2)の方程式の解を$\alpha,\ \beta,\ \gamma,\ \delta$とするとき,$\delta-\gamma=\gamma-\beta=\beta-\alpha$が成り立つときの$a,\ b$を求めよ.
北海学園大学 私立 北海学園大学 2010年 第1問
次の$x$に関する$2$つの$2$次方程式をそれぞれ$①$,$②$とおく.
\[ \begin{array}{ll}
x^2+ax+4=0 & \cdots\cdots① \\
x^2+2ax+4a+5=0 & \cdots\cdots②
\end{array} \]
ただし,$a$は実数とする.

(1)$2$次方程式$①$が実数解を持つような$a$の値の範囲と,$2$次方程式$②$が実数解を持つような$a$の値の範囲をそれぞれ求めよ.
(2)$2$次方程式$①$と$②$が共に実数解を持つような$a$の値の範囲を求めよ.また,$2$次方程式$①$と$②$のいずれか一方だけが実数解を持つような$a$の値の範囲を求めよ.
(3)$2$次方程式$①$が異なる実数解$\alpha_1,\ \alpha_2 (\alpha_1>\alpha_2)$を持ち,かつ$2$次方程式$②$が異なる実数解$\beta_1,\ \beta_2 (\beta_1>\beta_2)$を持つとする.$4<\alpha_1<5$かつ$11<\beta_1<12$となるような$a$の値の範囲を求めよ.
自治医科大学 私立 自治医科大学 2010年 第24問
関数$f(x)=x^3-px^2+(p^2-2p)x+q$($p>0$,$q>0$,$p$および$q$は整数とする)について考える.$f(x)=0$が$1$つの負の実数解と相異なる$2$つの正の実数解をもつとき,$pq$の値を求めよ.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$のとき,関数$y=\cos 2\theta-2 \sin \theta$の最大値とそのときの$\theta$の値を求めると$(y,\ \theta)=[ア]$であり,最小値とそのときの$\theta$の値を求めると$(y,\ \theta)=[イ]$である.
(2)実数$a,\ b$を係数とする方程式$x^3+ax^2+bx-4=0$の解の$1$つが$1-i$であるとき,残りの解のうち実数解を求めると$x=[ウ]$であり,$a,\ b$の値を求めると$(a,\ b)=[エ]$である.ただし,$i$は虚数単位である.
(3)$x$についての方程式$9^x-a \cdot 3^x+a^2-a=0$が$2$つの異なる実数解をもつとき,定数$a$のとりうる値の範囲は$[オ]$である.また,$x \geqq \sqrt{2}$,$y \geqq 1$,$x^2y=4$のとき,$(1+\log_2x)(\log_2y)$が最大値をとる$x,\ y$の値を求めると,$(x,\ y)=[カ]$である.
(4)座標平面上に中心が原点$\mathrm{O}$で半径が$3$の円$C$と,傾きが負で点$\mathrm{A}(5,\ 0)$を通る直線$\ell$を考える.$C$と$\ell$は$2$点$\mathrm{P}$,$\mathrm{Q}$($\mathrm{AP}<\mathrm{AQ}$)で交わるとする.$\angle \mathrm{POQ}$を$\theta$とするとき,$\triangle \mathrm{PQO}$の面積$S_1$を$\theta$を用いて表すと$S_1=[キ]$である.また,点$\mathrm{B}$の座標を$(-3,\ 0)$とするとき,$\triangle \mathrm{PQB}$の面積$S_2$の最大値は$[ク]$である.
西南学院大学 私立 西南学院大学 2010年 第4問
$3$次関数$f(x)=x^3-9px^2+15p^2x-q$について,次の問に答えよ.

(1)$p=1$,$q=0$のとき,$x=[ナ]$で極小値$[ニヌネ]$をとり,$x=[ノ]$で極大値$[ハ]$をとる.
(2)$p$を正の定数とする.$f(x)=0$が$3$つの異なる実数解を持つときの$q$の範囲は,$[ヒフヘ]p^3<q<[ホ]p^3$である.
北海道文教大学 私立 北海道文教大学 2010年 第2問
方程式$(m+1)x^2+2(m-1)x+2m-5=0$がただ$1$つの実数解をもつとき,定数$m$の値を求めなさい.
スポンサーリンク

「実数解」とは・・・

 まだこのタグの説明は執筆されていません。