タグ「実数解」の検索結果

28ページ目:全301問中271問~280問を表示)
島根大学 国立 島根大学 2010年 第4問
次の問いに答えよ.

(1)$\displaystyle \lim_{x \to \infty} \left( \frac{x^3}{x^2-1}-x \right)$を求めよ.
(2)関数$\displaystyle y=\frac{x^3}{x^2-1}$の増減,極値,グラフの凹凸を調べ,そのグラフの概形をかけ.
(3)$k$を定数とするとき,方程式$x^3-kx^2+k=0$の異なる実数解の個数を調べよ.
山口大学 国立 山口大学 2010年 第2問
$x$についての方程式$2x^3-(3a+1)x^2+2ax+b=0$が異なる2つの実数解をもつときの定数$a,\ b$の条件を求めなさい.
奈良女子大学 国立 奈良女子大学 2010年 第5問
$k$を実数とする.$f(x)=(x-k)^2+k^2-k-1$について以下の問いに答えよ.

(1)$k$の値によらず$f(3)>0$となることを示せ.
(2)2次方程式$f(x)=0$が実数解をもつような$k$の値の範囲を求めよ.
(3)$f(n)<0$をみたす正の整数$n$がただ一つ存在するような$k$の値の範囲を求めよ.
長崎大学 国立 長崎大学 2010年 第1問
$a,\ b$は実数で,$a>1$とする.$t$の関数
\[ f(t)=2t^3-3(a+1)t^2+6at+b \]
について,次の問いに答えよ.

(1)関数$f(t)$の極値を,$a,\ b$を用いて表せ.
(2)$a$の値を$x$座標,$b$の値を$y$座標とする$xy$平面上の点P$(a,\ b)$を考える.このとき,3次方程式$f(t)=0$が相異なる3つの実数解をもつような点P$(a,\ b)$の存在する領域$D$を$xy$平面上に図示せよ.
(3)$D$および$D$の境界からなる領域を$E$とする.領域$E$のうち,
\[ y \leqq -x^2+4x-11 \]
を満たす部分の面積を求めよ.
大分大学 国立 大分大学 2010年 第4問
$0<k<1$である定数$k$について,
\begin{eqnarray}
& & f(x)=\cos x -k \nonumber \\
& & g(x)=\sin x -k \tan x \nonumber
\end{eqnarray}
とおく.

(1)$\displaystyle 0<x < \frac{\pi}{2}$で,方程式$f(x)=0$は,ただ1つの実数解をもつことを示しなさい.
(2)$\displaystyle 0<x < \frac{\pi}{2}$で,方程式$g(x)=0$は,ただ1つの実数解をもつことを示しなさい.
(3)(2)での実数解を$\alpha$とする.定積分
\[ \int_0^\alpha g(x) \, dx \]
を$k$の式で表しなさい.
高知大学 国立 高知大学 2010年 第4問
$k$と$l$を実数の定数とし,$x$に関する方程式
\[ x^4-2(k-l)x^2+(k^2+l^2-6k-8l)=0 \quad \cdots\cdots ① \]
を考える.このとき,次の問いに答えよ.

(1)方程式$①$で$k=2,\ l=1$としたときの解を求めよ.
(2)方程式$①$が実数解を持たないための必要十分条件を$k$と$l$で表せ.
(3)方程式$①$の異なる実数解の個数が$3$つであるような実数の組$(k,\ l)$を座標平面上に図示せよ.
(4)方程式$①$の異なる実数解の個数がただ$1$つであるような整数の組$(k,\ l)$をすべて求めよ.
長崎大学 国立 長崎大学 2010年 第7問
4次方程式の解について,次の問いに答えよ.ただし,次のことは既知としてよい.
\begin{screen}
自然数$k,\ l,\ m$が次の条件

\mon[(イ)] $k$と$l$は1以外の公約数をもたない
\mon[(ロ)] $k$は$lm$の約数である

を満たすならば,$k$は$m$の約数である.
\end{screen}

(1)$a,\ b,\ c,\ d$は整数で,$d \neq 0$とする.次の方程式
\[ x^4+ax^3+bx^2+cx+d=0 \]
が有理数の解$r$をもつとき,$|\,r\,|$は自然数であり,かつ$|\,d\,|$の約数に限ることを証明せよ.
(2)次の方程式
\[ 2x^4-2x-1=0 \]
の実数解はすべて無理数であることを証明せよ.
鳥取大学 国立 鳥取大学 2010年 第4問
$a,\ k$は定数であり,$0<k<1$とする.次の問いに答えよ.

(1)方程式$x=a+k \sin x$はただ一つの実数解をもつことを示せ.
(2)不等式$|\sin \theta| \leqq |\,\theta\,|$がすべての実数$\theta$に対して成立することを示せ.
(3)不等式$|\sin \alpha-\sin \beta| \leqq |\alpha-\beta|$がすべての実数$\alpha,\ \beta$に対して成立することを示せ.
(4)数列$\{x_n\}$を,$x_0=0,\ x_n=a+k \sin x_{n-1} \ (n=1,\ 2,\ \cdots)$によって定める.数列$\{x_n\}$は(1)の方程式$x=a+k \sin x$の解に収束することを示せ.
山形大学 国立 山形大学 2010年 第1問
次の問いに答えよ.

(1)$f(x)=x^4-12x^2+8$のとき,$f(x)+f^{\prime\prime}(x)=0$によって表される4次方程式の実数解を求めよ.
(2)$\displaystyle \sin \frac{19}{12}\pi$の値を求めよ.
(3)定積分$\displaystyle \int_0^\pi x \sin^2 x \, dx$を求めよ.
琉球大学 国立 琉球大学 2010年 第2問
次の問いに答えよ.

(1)$a$を実数とする.$x$に関する方程式$4^x-2^{a+x}+2^a=0$が実数解を持つように$a$の値の範囲を求めよ.
(2)三角形ABCの三辺を$\text{AB}=4,\ \text{AC}=3,\ \text{BC}=\sqrt{13}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおくとき,内積$\overrightarrow{b} \cdot \overrightarrow{c}$の値を求めよ.また,三角形ABCの重心をGとするとき,線分AGの長さを求めよ.
スポンサーリンク

「実数解」とは・・・

 まだこのタグの説明は執筆されていません。