タグ「実数解」の検索結果

24ページ目:全301問中231問~240問を表示)
富山大学 国立 富山大学 2011年 第2問
次の問いに答えよ.

(1)関数$y=|x^2-2x-3|$のグラフをかけ.
(2)$a$を実数とする.このとき,方程式$|x^2-2x-3|=a$の実数解の個数を求めよ.
(3)方程式$|\abs{x^2-2x-3|-6}=2$の実数解の個数を求めよ.
山口大学 国立 山口大学 2011年 第3問
$p,\ q$を整数とする.2次方程式$x^2+px+q=0$が異なる2つの実数解$\alpha,\ \beta \ (\alpha < \beta)$を持ち,区間$[\,\alpha,\ \beta\,]$には,ちょうど2つの整数が含まれているとする.$\alpha$が整数でないとき,$\beta-\alpha$の値を求めなさい.
千葉大学 国立 千葉大学 2011年 第13問
$a,\ b,\ c$は実数とし,
\[ f(x) = x^4+bx^2+cx+2 \]
とおく.さらに$4$次方程式$f(x)=0$は異なる$2$つの実数解$\alpha,\ \beta$と$2$つの虚数解をもち,
\[ \alpha+\beta=-(a+1),\quad \alpha\beta=\frac{1}{a} \]
を満たすと仮定する.

(1)$b,\ c$を$a$を用いて表せ.
(2)$a$のとり得る値の範囲を求めよ.
(3)$b$のとり得る値の範囲を求めよ.
山形大学 国立 山形大学 2011年 第2問
袋の中に$5$個の玉が入っている.それらは,$0$と書かれた玉が$2$個,$1$と書かれた玉,$-1$と書かれた玉,$2$と書かれた玉がそれぞれ$1$個ずつである.この袋の中から$3$個の玉を取り出す.取り出した$3$個の玉に書かれた数字の和を$m$とする.次に,袋の中に残った$2$個の玉に書かれた数字の積を$n$とする.このように定義された$m$と$n$のもとで,$2$次関数
\[ f(x)=x^2-mx+n \]
を考える.このとき,次の問に答えよ.

(1)$m$のとり得る値をすべて求めよ.
(2)$m$と$n$のとり得る組合せ$(m,\ n)$をすべて求めよ.
(3)$m$と$n$のとり得る組合せ$(m,\ n)$のすべてについて,それぞれが起こる確率を求めよ.
(4)不等式$f(x)>0$がすべての実数$x$について成り立つ確率を求めよ.
(5)方程式$f(x)=0$が異なる実数解$\alpha,\ \beta$をもち,同時に$\alpha<2$かつ$\beta<2$となる確率を求めよ.
山形大学 国立 山形大学 2011年 第2問
袋の中に5個の玉が入っている.それらは,0と書かれた玉が2個,1と書かれた玉,$-1$と書かれた玉,2と書かれた玉がそれぞれ1個ずつである.この袋の中から3個の玉を取り出す.取り出した3個の玉に書かれた数字の和を$m$とする.次に,袋の中に残った2個の玉に書かれた数字の積を$n$とする.このように定義された$m$と$n$のもとで,2次関数
\[ f(x)=x^2-mx+n \]
を考える.このとき,次の問に答えよ.

(1)$m$のとり得る値をすべて求めよ.
(2)$m$と$n$のとり得る組合せ$(m,\ n)$をすべて求めよ.
(3)$m$と$n$のとり得る組合せ$(m,\ n)$のすべてについて,それぞれが起こる確率を求めよ.
(4)不等式$f(x)>0$がすべての実数$x$について成り立つ確率を求めよ.
(5)方程式$f(x)=0$が異なる実数解$\alpha,\ \beta$をもち,同時に$\alpha<2$かつ$\beta<2$となる確率を求めよ.
長岡技術科学大学 国立 長岡技術科学大学 2011年 第1問
実数$a$に対して$2$次方程式
\[ x^2-5x+6-a=0 \]
を考える.また,この$2$次方程式が整数解を持つような$a$を小さい順に並べたものを$a_1,\ a_2,\ a_3,\ \cdots$とする.以下の問いに答えなさい.

(1)この2次方程式が実数解を持つような$a$の範囲を求めなさい.
(2)$a_1$と$a_2$を求めなさい.
(3)$a_n$を$n$の式で表しなさい.
(4)$S_n=a_1+a_2+\cdots +a_n$とおく.$S_n$を$n$の式で表しなさい.
京都教育大学 国立 京都教育大学 2011年 第6問
$-1 \leqq a \leqq 1$として,次の問に答えよ.

(1)直線$y=a$と半円$x^2+y^2=1 \ (x \geqq 0)$が,ただ1つの点を共有することを示せ.
(2)方程式$\sin x=a$は閉区間$\displaystyle \left[ -\frac{\pi}{2},\ \frac{\pi}{2} \right]$の範囲でただ1つの実数解をもつことを示せ.
(3)$-1 \leqq x \leqq 1$とする.次の条件
\[ x=\sin y,\quad -\frac{\pi}{2} \leqq y \leqq \frac{\pi}{2} \]
をみたす$y$を$g(x)$とおく.曲線$y=g(x) \ (-1 \leqq x \leqq 1)$の概形をかけ.
(4)曲線$y=g(x)$と2直線$\displaystyle x=\frac{1}{2},\ y=0$で囲まれる図形の面積を求めよ.ただし,$g(x)$は(3)で定義されたものとする.
早稲田大学 私立 早稲田大学 2011年 第2問
次の問に答えよ.

(1)$a,\ b$は整数で,$2$次方程式
\[ x^2 + ax + b= 0 \dotnum{A} \]
が異なる$2$つの実数解$\alpha,\ \beta$をもつとする.このとき,$\alpha,\ \beta$はともに整数であるか,ともに無理数であるかのいずれかであることを証明する.以下の問に答え,証明を完成させよ.\\
\quad まず,$b=0$のときは,$x^2+ax=0$であるから\maru{A}は整数解$0,\ -a$をもつ.以下では$ b \neq 0$とする.\\
\quad 解と係数の関係より,$\alpha + \beta = -a,\ \alpha\beta = b$であり,これらは整数である.有理数と無理数の和は有理数でなく,整数と整数以外の有理数の和は整数ではないという事実を用いると,$\alpha,\ \beta$がともに整数以外の有理数であるとして矛盾を導けばよい.\\
\quad そこで,$\alpha,\ \beta$が2以上の整数$p_1,\ p_2$と0でない整数$q_1,\ q_2$を用いて,既約分数
\[ \alpha = \frac{q_1}{p_1},\quad \beta = \frac{q_2}{p_2} \]
で表されると仮定する.ここに,$\displaystyle\frac{q_i}{p_i}\ (i=1,\ 2)$が既約分数であるとは,$p_i$と$|q_i|$の最大公約数が1であることをいう.このとき,
\[ \alpha + \beta = \frac{p_2q_1+p_1q_2}{p_1p_2} \cdots\cdots① \]
\[ \alpha\beta = \frac{q_1q_2}{p_1p_2} \cdots\cdots② \]
である.

(i) $①$において,$\alpha+\beta$が整数であることを用いて,$p_1=p_2$であることを示せ.
(ii) $②$において,$\alpha\beta$が整数であることと問\maru{1}の結果から,既約分数の仮定に矛盾することを示せ.

$(ⅱ)$の結果から,$\alpha,\ \beta$はともに整数であるか,ともに無理数であることが示された.
(2)$c$が自然数のとき,$\sqrt{c}$は自然数であるか無理数であることを証明せよ.
北海学園大学 私立 北海学園大学 2011年 第1問
$f(x)=x^2+4ax-8a+5$とおくとき,$x$の$2$次方程式$f(x)=0$は異なる$2$つの実数解$\alpha,\ \beta$をもつ.ただし,$a$は実数とし,$\alpha>\beta$とする.

(1)$a$の値の範囲を求めよ.
(2)$\alpha>1$かつ$\beta<1$であるような$a$の値の範囲を求めよ.
(3)$\beta>3$であるような$a$の値の範囲を求めよ.
北海学園大学 私立 北海学園大学 2011年 第3問
$f(x)=x^2+4ax-8a+5$とおくとき,$x$の$2$次方程式$f(x)=0$は異なる$2$つの実数解$\alpha,\ \beta$をもつ.ただし,$a$は実数とし,$\alpha>\beta$とする.

(1)$a$の値の範囲を求めよ.
(2)$\alpha>1$かつ$\beta<1$であるような$a$の値の範囲を求めよ.
(3)$\beta>3$であるような$a$の値の範囲を求めよ.
スポンサーリンク

「実数解」とは・・・

 まだこのタグの説明は執筆されていません。