タグ「実数解」の検索結果

21ページ目:全301問中201問~210問を表示)
学習院大学 私立 学習院大学 2012年 第2問
$0 \leqq t<2\pi$に対して,$2$次方程式
\[ x^2+(\sin t-2)x+\sin 2t-\sin t=0 \]
を考える.

(1)すべての$t$に対して方程式は相異なる$2$つの実数解をもつことを示せ.
(2)方程式が$2$つの正の実数解をもつための$t$の範囲を求めよ.
中央大学 私立 中央大学 2012年 第1問
実数$A,\ B,\ C$を係数とする$3$次方程式
\[ x^3+Ax^2-B^2x+C=0 \]
は$3$つの互いに異なる実数解$\alpha,\ \beta,\ \gamma$をもち,$\alpha \beta \gamma \neq 0$である.このとき以下の設問に答えよ.

(1)$A,\ B,\ C$を用いて$\displaystyle \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$を表せ.
(2)$A,\ B,\ C$を用いて$\displaystyle \frac{1}{\alpha^2}+\frac{1}{\beta^2}+\frac{1}{\gamma^2}$を表せ.
中央大学 私立 中央大学 2012年 第1問
次の各問いに答えよ.

(1)次の式を展開せよ.
\[ (x+1)(x-1)(2x+3)(3x-1) \]
(2)$m$は自然数である.$x$についての$2$次方程式
\[ x^2-2mx+6m-8=0 \]
が,実数解を持たないとき,$m$の値を求めよ.
(3)$0^\circ \leqq \theta \leqq 360^\circ$において,次の関数の最大値と最小値を求めよ.
\[ y=2 \sin^2 \theta+\cos \theta-2 \]
(4)次の定積分の値を求めよ.
\[ \int_1^2 (3x^2+4x+2) \, dx \]
(5)大小$2$つのさいころを投げ,出た目の数をそれぞれ$a,\ b$とするとき,$|a-b| \geqq 3$となる確率を求めよ.
(6)半径$r$の球の体積$\displaystyle V=\frac{4 \pi r^3}{3}$を,$r$で微分して,導関数$V^\prime$を求めよ.これは,半径$r$の球の何を表しているか.
中央大学 私立 中央大学 2012年 第1問
次の各問いに答えよ.

(1)次の$3$次式を$1$次式の積に因数分解せよ.
\[ x^3-2x^2-5x+6 \]
(2)$x$についての$2$次方程式
\[ x^2-2kx+3k-2=0 \]
が,相異なる$2$つの実数解を持つような,定数$k$の値の範囲を求めよ.
(3)$x$の変域が$-1 \leqq x \leqq 2$であるときの$2$次関数
\[ y=2x^2-3x+1 \]
の最大値と最小値を求めよ.
(4)$5$個の数字$1,\ 2,\ 3,\ 4,\ 5$を一回ずつ使って$4$桁の数を作る.このとき$3215$以上の数はいくつあるか求めよ.
(5)$2^{1000}$は何桁の数になるか.ただし,$\log_{10}2=0.30103$とする.
(6)図のような三角形$\mathrm{ABC}$において,$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}=5:6:4$である.このとき$\sin A:\sin B:\sin C$を整数比で表せ.

(図は省略)
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[ヒ]$までに当てはまる数字$0$~$9$を求めよ.ただし,分数は既約分数として表しなさい.

(1)$a$を実数とするとき,方程式
\[ |x|-|x^2-4|+|x+6|=a \]
を考える.この方程式の実数解が$2$個であるための条件は
\[ a<[ア],\quad [イ]<a<[ウ][エ] \]
であり,実数解を持たないための条件は
\[ a>[オ][カ] \]
である.また,次の不等式
\[ |x|-|x^2-4|+|x+6|>2 \]
には,正の整数解が$[キ]$個,負の整数解が$[ク]$個ある.
(2)空間内に点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,それぞれの大きさと内積が
\[ \begin{array}{l}
|\overrightarrow{a}|=9,\quad |\overrightarrow{b}|=12,\quad |\overrightarrow{c}|=\sqrt{42}, \\ \\
\overrightarrow{a} \cdot \overrightarrow{b}=72,\quad \overrightarrow{a} \cdot \overrightarrow{c}=57,\quad \overrightarrow{b} \cdot \overrightarrow{c}=48
\end{array} \]
であるとする.$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角は$\displaystyle \frac{1}{[ケ]} \pi$であり,$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[コ][サ]}{[シ]}$である.ベクトル
\[ \overrightarrow{\mathrm{OA}}+s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}} \]
が$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面と直交するのは$\displaystyle s=\frac{[ス]}{[セ]}$,$\displaystyle t=\frac{[ソ]}{[タ]}$のときである.したがって,四面体$\mathrm{OABC}$の体積は$[チ][ツ]$である.
(3)三角関数についての等式
\[ [テ] \cos^3 \theta-[ト] \cos \theta-\cos 3\theta=0 \]
を利用して,$t$に関する$3$次方程式
\[ [テ]t^3-[ト]t-\frac{\sqrt{2}}{2}=0 \]
を解いたとき,$\displaystyle \cos \frac{3}{4} \pi$が解の$1$つであることがわかる.したがって,この方程式の残りの$2$つの解は
\[ \cos \frac{[ナ]}{12} \pi=\frac{\sqrt{[ニ]}+\sqrt{[ヌ]}}{[ネ]} \]

\[ \cos \frac{[ノ]}{12} \pi=\frac{\sqrt{[ニ]}-\sqrt{[ヌ]}}{[ネ]} \]
となる.これより,
\[ \tan \frac{[ナ]}{12} \pi=[ハ]-\sqrt{[ヒ]} \]
となる.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$1$枚の硬貨をくり返し投げるゲームを行う.このゲームを,表がちょうど$4$回出たところ,または,裏がちょうど$4$回出たところで終了することにする.ただし,硬貨を投げたとき,表が出る確率と裏が出る確率はいずれも$\displaystyle \frac{1}{2}$である.

(i) 硬貨を$k$回投げたところで終了する確率を$p_k$とすると,
\[ p_4=\frac{[ア]}{[イ]},\quad p_5=\frac{[ウ]}{[エ]},\quad p_7=\frac{[オ]}{[カ][キ]} \]
である.
(ii) このゲームが終了するまでに硬貨を投げる回数の期待値は
\[ \frac{[ク][ケ]}{[コ][サ]} \]
である.

(2)$0^\circ \leqq \theta \leqq 180^\circ$の$\theta$に対して,$x$に関する$2$次方程式
\[ x^2+(\sqrt{2} \sin 2\theta)x+2 \cos \theta=0 \]
を考える.

(i) この方程式が異なる$2$つの実数解をもつのは,
\[ [ア][イ]^\circ<\theta \leqq [ウ][エ][オ]^\circ \]
のときである.

以下,この方程式が異なる$2$つの実数解をもつ場合について考え,この$2$つの実数解を$\alpha,\ \beta$とする.

(ii) 無限等比級数
\[ 1+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^2+\cdots +\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^n+\cdots \]
が収束するのは,
\[ [カ][キ][ク]^\circ<\theta \leqq [ケ][コ][サ]^\circ \]
のときである.
(iii) 無限等比級数
\[ 1+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^2+\cdots +\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^n+\cdots \]
が収束して,その和が$2-\sqrt{2}$となるのは,
\[ \theta=[シ][ス][セ]^\circ \]
のときである.

(3)$\triangle \mathrm{OAB}$において,辺$\mathrm{AB}$を$2:1$の比に内分する点を$\mathrm{C}$($\mathrm{AC}:\mathrm{CB}=2:1$),線分$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{D}$($\mathrm{OD}:\mathrm{DC}=1:2$)とする.辺$\mathrm{OA}$上に点$\mathrm{P}$を,辺$\mathrm{OB}$上に点$\mathrm{Q}$を,線分$\mathrm{PQ}$が点$\mathrm{D}$を通るようにとる.

(i) $\displaystyle \frac{\mathrm{OA}}{\mathrm{OP}}+2 \times \frac{\mathrm{OB}}{\mathrm{OQ}}=[ア]$である.


以下,$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\angle \mathrm{AOB}=60^\circ$とする.


(ii) $\mathrm{OP}=1$のとき,$\triangle \mathrm{OPQ}$の面積は
\[ \frac{[イ]}{[ウ][エ]} \times \sqrt{[オ]} \]
である.
(iii) 線分$\mathrm{OP}$の長さと線分$\mathrm{OQ}$の長さの和$\mathrm{OP}+\mathrm{OQ}$がもっとも小さくなるように点$\mathrm{P}$,$\mathrm{Q}$をとるとき,
\[ \mathrm{OP}=\frac{[カ]+[キ] \sqrt{[ク]}}{[ケ]} \]
である.このとき,
\[ \mathrm{OP}+\mathrm{OQ}=\frac{[コ]+[サ] \sqrt{[シ]}}{[ス]} \]
である.
東京理科大学 私立 東京理科大学 2012年 第2問
$a$を実数とし,関数$f(x)=x^3+3ax^2+(3a^2-a)x$について考える.方程式$f(x)=0$の異なる実数解の個数を$k$とする.$f(0)=0$であることに注意せよ.

(1)$k=1$となるような$a$の値の範囲を求めよ.
(2)$k=2$となるような$a$の値を求めよ.
(3)$k=3$となるような$a$の値の範囲を求めよ.
(4)$a$は$(3)$で求めた範囲にあるとする.方程式$f(x)=0$の$0$以外の実数解を$\alpha,\ \beta$とおく.ただし,$\alpha<\beta$とする.

(i) $\alpha<0$であることを示せ.
(ii) $\alpha<\beta<0$であるような$a$の値の範囲を求めよ.
(iii) $\alpha<0<\beta$であるような$a$の値の範囲を求めよ.

(5)関数$f(x)$が極大値と極小値をもつような$a$の値の範囲を求めよ.
(6)$a$が$(5)$で求めた範囲にあるとき,関数$f(x)$の極小値を$m(a)$とおく.$a$が$(5)$で求めた範囲を動くときの$m(a)$の最大値と,最大値を与える$a$の値を求めよ.
酪農学園大学 私立 酪農学園大学 2012年 第1問
次の各問いに答えよ.

(1)$(xy+1)(x+1)(y+1)+xy$を因数分解せよ.
(2)$\displaystyle \sin \theta+\cos \theta=\frac{3}{5} (0^\circ \leqq \theta \leqq 180^\circ)$のとき,$\sin \theta \cos \theta$の値を求めよ.

(3)$\displaystyle \frac{2 \sqrt{7}}{\sqrt{5}+1}-\frac{\sqrt{5}}{\sqrt{7}+\sqrt{5}}$の分母を有理化して簡単にせよ.

(4)$8$個の異なる荷物を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人に分けるとき,$\mathrm{A}$に$3$個,$\mathrm{B}$に$2$個,$\mathrm{C}$に$3$個のように分ける方法は何通りあるか.
(5)方程式$x^2+(2a+1)x+a+1=0$が実数解をもつように,定数$a$の値の範囲を求めよ.
(6)$2$次関数$y=x^2-2mx+3m$の最小値を$k$とするとき,$k$の最大値とそのときの$m$の値を求めよ.
北海道医療大学 私立 北海道医療大学 2012年 第1問
以下の問に答えよ.

(1)$2$次関数$\displaystyle y=-\frac{3}{2}x^2+5x-3 (-1 \leqq x \leqq 2)$の最大値を求めよ.
(2)$2$次方程式$\displaystyle x^2+kx+k^2+\frac{7}{2}k-6=0$が異なる$2$つの実数解を持つとき,定数$k$の値の範囲は$A<k<B$のようになる.$A,\ B$の値を求めよ.

(3)式$\displaystyle \frac{\sqrt{5}-\sqrt{2}}{\sqrt{7}+\sqrt{5}+\sqrt{2}}$の分母を有理化すると,$\displaystyle \frac{A \sqrt{10}+B \sqrt{35}+C \sqrt{14}}{20}$となるという.$A,\ B,\ C$の値を求めよ.
(4)不等式$3 |x+3|>4+x$の解は,$x<A,\ B<x$のようになる.$A,\ B$の値を求めよ.
(5)$2$つの放物線$y=2x^2-4x+7$と$y=-3x^2+8x+6$の$2$つの共有点と,点$(3,\ 5)$を通る放物線の方程式は,$y=Ax^2+Bx+C$となる.定数$A,\ B,\ C$の値を求めよ.
北海道医療大学 私立 北海道医療大学 2012年 第1問
以下の問に答えよ.

(1)$2$次関数$\displaystyle y=-\frac{3}{2}x^2+5x-3 (-1 \leqq x \leqq 2)$の最大値を求めよ.
(2)$2$次方程式$\displaystyle x^2+kx+k^2+\frac{7}{2}k-6=0$が異なる$2$つの実数解を持つとき,定数$k$の値の範囲は$A<k<B$のようになる.$A,\ B$の値を求めよ.

(3)式$\displaystyle \frac{\sqrt{5}-\sqrt{2}}{\sqrt{7}+\sqrt{5}+\sqrt{2}}$の分母を有理化すると,$\displaystyle \frac{A \sqrt{10}+B \sqrt{35}+C \sqrt{14}}{20}$となるという.$A,\ B,\ C$の値を求めよ.
(4)不等式$3 |x+3|>4+x$の解は,$x<A,\ B<x$のようになる.$A,\ B$の値を求めよ.
(5)$2$つの放物線$y=2x^2-4x+7$と$y=-3x^2+8x+6$の$2$つの共有点と,点$(3,\ 5)$を通る放物線の方程式は,$y=Ax^2+Bx+C$となる.定数$A,\ B,\ C$の値を求めよ.
スポンサーリンク

「実数解」とは・・・

 まだこのタグの説明は執筆されていません。