タグ「定義」の検索結果

9ページ目:全248問中81問~90問を表示)
東京医科歯科大学 国立 東京医科歯科大学 2014年 第3問
$a$を正の実数,$k$を自然数とし,$x>0$で定義される関数
\[ f(x)=\int_a^{ax} \frac{k+\sqrt[k]{u}}{ku} \, du \]
を考える.このとき以下の各問いに答えよ.

(1)$f(x)$の増減および凹凸を調べ,$y=f(x)$のグラフの概形をかけ.
(2)$y=f(x)$の$x=1$における接線の方程式を求めよ.
(3)$S$を正の実数とするとき,$f(p)=S$を満たす実数$p$がただ$1$つ存在することを示せ.
(4)$\displaystyle b=\frac{k}{k+\sqrt[k]{a}}$とおくとき,$(2)$の$S,\ p$について,次の不等式が成立することを示せ.
\[ 1+bS<p<e^{bS} \]
山形大学 国立 山形大学 2014年 第1問
$-a<x<a$で定義された曲線$C:y=x \sqrt{a^2-x^2}$がある.ただし$a$は正の定数とする.以下の問いに答えよ.

(1)$y$の増減を調べ,曲線$C$の概形をかけ.
(2)曲線$C$と直線$\displaystyle L:y=\frac{1}{\sqrt{3}}x$が$3$つの共有点を持つような定数$a$の値の範囲を求めよ.またそのときの共有点の$x$座標をすべて求めよ.
(3)$3$つの共有点のうち,$x$座標の値が最も大きい点を$\mathrm{P}$とする.点$\mathrm{P}$における曲線$C$の接線と,直線$L$および$y$軸で囲まれる三角形が正三角形になるときの定数$a$の値を求め,その正三角形の面積を求めよ.
帯広畜産大学 国立 帯広畜産大学 2014年 第1問
$2$次方程式$x^2-x-1=0$の解を$\alpha,\ \beta (\alpha>\beta)$とし,
\[ \left( \begin{array}{c}
a_n \\
b_n
\end{array} \right)=\left( \begin{array}{cc}
\displaystyle\frac{\sqrt{5}}{5} & -\displaystyle\frac{\sqrt{5}}{5} \\
1 & 1
\end{array} \right) \left( \begin{array}{c}
\alpha^n \\
\beta^n
\end{array} \right) \]
によって数列$\{a_n\}$,$\{b_n\}$を定義する.ただし,$n$は自然数である.次の各問に答えなさい.

(1)次の各問に答えなさい.

(i) $\alpha,\ \beta$の値を求めなさい.
(ii) $a_1,\ a_2,\ a_3$の値を求めなさい.
(iii) $b_1,\ b_2,\ b_3$の値を求めなさい.

(2)ベクトル$\overrightarrow{p},\ \overrightarrow{q},\ \overrightarrow{r}$をそれぞれ$\overrightarrow{p}=(a_1,\ b_1)$,$\overrightarrow{q}=(a_2,\ b_2)$,$\overrightarrow{r}=(a_3,\ b_3)$と定義する.

(i) $\overrightarrow{p},\ \overrightarrow{q},\ \overrightarrow{r}$の大きさ$|\overrightarrow{p}|$,$|\overrightarrow{q}|$,$|\overrightarrow{r}|$を求めなさい.
(ii) $\overrightarrow{p}$と$\overrightarrow{q}$のなす角$\theta$について,$\cos \theta$,$\sin \theta$,$\tan \theta$を求めなさい.
(iii) $\overrightarrow{q}$と$\overrightarrow{r}$のなす角$\theta$について,$\cos 2\theta$,$\sin 2\theta$,$\tan 2\theta$を求めなさい.

(3)自然数$n$について,$a_{n+1} \geqq a_n$,$b_{n+1} \geqq b_n$がそれぞれ成り立つ.

(i) $\displaystyle \log_{10}a_n \leqq \frac{1}{3}$を満たす$n$をすべて求めなさい.

(ii) $\displaystyle \log_{10}b_n \leqq \frac{1}{3}$を満たす$n$をすべて求めなさい.

(iii) $\log_{10}(a_nb_n) \leqq 1$を満たす$n$をすべて求めなさい.
大阪教育大学 国立 大阪教育大学 2014年 第1問
$\alpha,\ \beta$は正の実数とする.次の条件によって定義される数列$\{a_n\},\ \{b_n\}$について,以下の問に答えよ.

$a_1=\alpha,\quad b_1=\beta,$
$a_{n+1}=\alpha a_n-\beta b_n,\quad b_{n+1}=\beta a_n+\alpha b_n \quad (n=1,\ 2,\ 3,\ \cdots)$

(1)$\alpha^2+\beta^2 \leqq 1$が成り立つならば,任意の自然数$n$に対して${a_n}^2+{b_n}^2 \leqq 1$が成り立つことを示せ.
(2)$\displaystyle \alpha=\cos \theta,\ \beta=\sin \theta \left( 0<\theta<\frac{\pi}{2} \right)$と表されているとき,$a_2$,$b_2$,$a_3$,$b_3$を$\theta$を用いて表せ.
(3)$a_{12}=1$,$b_{12}=0$となるような正の実数の組$(\alpha,\ \beta)$を全て求めよ.
秋田大学 国立 秋田大学 2014年 第2問
条件$a_1=0$,$a_{n+1}=4a_n+3 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$がある.関数$f_n(x)$と$g(x)$が
\[ \begin{array}{l}
f_n(x)=a_nx^2+a_n+1 \\
g(x)=x^3+3x^2-9x+4 \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
で定義されるとき,次の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.また,$\displaystyle \sum_{k=1}^n a_k$を求めよ.
(2)関数$y=|f_2(x)-g(x)|$のグラフをかけ.また,$-3 \leqq x \leqq 3$の範囲で$y$の値の最大値とそのときの$x$の値を求めよ.
秋田大学 国立 秋田大学 2014年 第2問
条件$a_1=0$,$a_{n+1}=4a_n+3 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$がある.関数$f_n(x)$と$g(x)$が
\[ \begin{array}{l}
f_n(x)=a_nx^2+a_n+1 \\
g(x)=x^3+3x^2-9x+4 \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
で定義されるとき,次の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.また,$\displaystyle \sum_{k=1}^n a_k$を求めよ.
(2)関数$y=|f_2(x)-g(x)|$のグラフをかけ.また,$-3 \leqq x \leqq 3$の範囲で$y$の値の最大値とそのときの$x$の値を求めよ.
愛媛大学 国立 愛媛大学 2014年 第2問
$t,\ x$は実数とする.関数$f(t)$を$f(t)=2 |t-1|+t+1$と定義し,$\displaystyle F(x)=\int_0^x f(t) \, dt$とおく.

(1)関数$y=f(t)$のグラフをかけ.
(2)関数$F(x)$を求めよ.
(3)曲線$y=F(x)$上の点$(0,\ F(0))$における接線$\ell$の方程式を求めよ.
(4)曲線$y=F(x)$と$(3)$で求めた接線$\ell$とで囲まれた図形の面積を求めよ.
東京学芸大学 国立 東京学芸大学 2014年 第4問
$f(x)$を区間$[0,\ 1]$で定義された連続な関数とする.このとき,定積分
\[ I=\int_0^1 \left[ 2f(x) \log (x+1)-\{f(x)\}^2 \right] \, dx \]
について下の問いに答えよ.

(1)$I$の値を最大にするような$f(x)$を求めよ.
(2)$I$の最大値を求めよ.
長崎大学 国立 長崎大学 2014年 第4問
区間$0 \leqq x \leqq \pi$において,関数$f(x)$と関数$g(x)$を
\[ f(x)=\frac{1}{2} \cos x,\quad g(x)=\cos \frac{x}{2}+c \]
と定義する.$c$は定数である.次の問いに答えよ.

(1)区間$0 \leqq x \leqq \pi$において,$2$曲線$y=f(x)$と$y=g(x)$が$x=0$以外の点で接するように$c$の値を定め,接点$(p,\ q)$を求めよ.また,そのとき,区間$0 \leqq x \leqq \pi$における関数$f(x)$と関数$g(x)$の大小関係を調べよ.
(2)定数$c$と接点$(p,\ q)$は$(1)$で求めたものとする.そのとき,区間$0 \leqq x \leqq p$において,$y$軸および$2$曲線$y=f(x)$,$y=g(x)$によって囲まれた図形を$D$とする.$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
愛媛大学 国立 愛媛大学 2014年 第5問
$n$は自然数,$p_0$,$p_1$,$\cdots$,$p_n$は$p_0>0$,$\cdots$,$p_n>0$かつ$p_0+p_1+\cdots+p_n=1$を満たす定数とする.ポイント$0,\ 1,\ 2,\ \cdots,\ n-1,\ n$が,それぞれ$p_0,\ p_1,\ p_2,\ \cdots,\ p_{n-1},\ p_n$の確率で得られる試行$T$を考える.試行$T$を$1$回行って得られるポイントの期待値を$a$とし,$A=[a]+1$とする.ただし,実数$x$に対して$[x]$は$x$を超えない最大の整数を表す.競技者は,試行$T$を下記の各設問のルールに従って何回か行う.

(1)$k$を$1 \leqq k \leqq n$を満たす整数とする.競技者は,試行$T$を以下のルールに従って最大$2$回まで行う.

\mon[$①$] 試行$T$を$1$回行い,もしポイントが$k$以上であれば$2$回目の試行を行わず,このポイントを賞金とする.
\mon[$②$] $1$回目のポイントが$k$未満であれば$2$回目の試行$T$を行う.このとき,$1$回目のポイントは無効とし,$2$回目のポイントを賞金とする.
このとき賞金の期待値を$b_k$とする.$b_k$を求めよ.

(2)$(1)$の期待値$b_k$は$k$が$A$のとき最大となることを示せ.
(3)$m$を$1 \leqq m \leqq n$を満たす整数とする.競技者は,試行$T$を以下のルールに従って最大$3$回まで行う.

\mon[$①$] 試行$T$を$1$回行い,もしポイントが$m$以上であれば$2$回目以降の試行を行わず,このポイントを賞金とする.
\mon[$②$] $1$回目のポイントが$m$未満であれば$2$回目の試行$T$を行う.$2$回目のポイントが$A$以上であれば$3$回目の試行を行わない.このとき,$1$回目のポイントは無効とし,$2$回目のポイントを賞金とする.
\mon[$③$] $2$回目のポイントが$A$未満であれば$3$回目の試行$T$を行う.このとき,$1$回目,$2$回目のポイントは無効とし,$3$回目のポイントを賞金とする.
このとき賞金の期待値を$c_m$とする.$c_m$を求めよ.

(4)$(3)$の期待値$c_m$は$m$が$B=[b_A]+1$のとき最大となり,$c_B \geqq b_A$であることを示せ.ただし,$b_A$は$(1)$で求めた期待値$b_k$の$k=A$のときの値である.
(5)$n=5$とし,試行$T$として,$5$枚の硬貨を同時に投げ,表の出た枚数をポイントとする試行を考える.また,$b_k$,$c_m$は上記で定義したものとする.

(i) $p_0$,$p_1$,$p_2$,$p_3$,$p_4$,$p_5$,$a$を求めよ.
(ii) $(1)$のように最大$2$回試行を行う場合,$b_k$の最大値を求めよ.
(iii) $(3)$のように最大$3$回試行を行う場合,$c_m$の最大値を求めよ.
スポンサーリンク

「定義」とは・・・

 まだこのタグの説明は執筆されていません。