タグ「定義」の検索結果

8ページ目:全248問中71問~80問を表示)
名古屋市立大学 公立 名古屋市立大学 2015年 第2問
$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$で定義された関数$\displaystyle f(x)=\int_x^{x+\frac{\pi}{4}} |2 \cos^2 t+2 \sin t \cos t-1| \, dt$について,次の問いに答えよ.

(1)$\displaystyle f \left( \frac{\pi}{2} \right)$の値を求めよ.
(2)積分を計算して,$f(x)$を求めよ.
(3)$f(x)$の最大値と最小値,およびそれらを与える$x$の値を求めよ.
札幌医科大学 公立 札幌医科大学 2015年 第1問
$a$と$c$は実数で$a>0$とする.また,関数$f(x)$を次式で定義する.
\[ f(x)=(x^2+a)(x-a^2)^2-cx^2 \]

(1)方程式$f(x)=0$の異なる実数解の個数を求めよ.
今後,方程式$f(x)=0$が$3$個の異なる実数解を持つ場合のみを取り扱う.
(2)方程式$f(x)=0$の$3$個の異なる実数解を$a$を用いて表せ.
(3)$y=f(x)$のグラフのうち$f(x) \geqq 0$の部分と$x$軸で囲まれる図形の面積を$S(a)$とする.このとき$\displaystyle \lim_{a \to +0} \frac{S(a)}{a^5}$を求めよ.
九州大学 国立 九州大学 2014年 第5問
$2$以上の自然数$n$に対して,関数$f_n(x)$を
\[ f_n(x)=(x-1)(2x-1) \cdots (nx-1) \]
と定義する.$k=1,\ 2,\ \cdots,\ n-1$に対して,$f_n(x)$が区間$\displaystyle \frac{1}{k+1}<x<\frac{1}{k}$でただ$1$つの極値をとることを証明せよ.
埼玉大学 国立 埼玉大学 2014年 第1問
$a_1=3$,$\displaystyle a_{n+1}=\frac{5a_n-4}{2a_n-1} (n=1,\ 2,\ 3,\ \cdots)$で定義される数列$\{a_n\}$について,以下の問いに答えよ.

(1)すべての自然数$n$に対し,$a_n>2$であることを示せ.

(2)$\displaystyle b_n=\frac{1}{a_n-2}$とおく.数列$\{b_n\}$の一般項を求めよ.

(3)極限$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
大阪大学 国立 大阪大学 2014年 第2問
$t>0$において定義された関数$f(t)$は次の条件(ア),(イ)を満たす.

\mon[(ア)] $t>0$のとき,すべての実数$x$に対して不等式
\[ t \cdot \frac{e^x+e^{-x}}{2}+f(t) \geqq 1+x \]
が成り立つ.
\mon[(イ)] $t>0$に対して,等式
\[ t \cdot \frac{e^x+e^{-x}}{2}+f(t)=1+x \]
を満たす実数$x$が存在する.
このとき,$f(t)$を求めよ.
静岡大学 国立 静岡大学 2014年 第3問
$p$を$\displaystyle 0<p<\frac{1}{6}$を満たす実数とする.次のように数列$\{a_n\}$を帰納的に定義する.$a_1=0$とし,第$n$項$a_n$を用いた関数
\[ f_n(x)=2x^3-3px^2+6a_nx-1 \]
が極大値と極小値をもつならば,第$n+1$項$a_{n+1}$を$f_n(x)$の極大値と極小値の和により定める.そうでないならば,$a_{n+1}=0$と定める.このとき,次の問いに答えよ.

(1)$f_1(x)$が極大値と極小値をもつことを示し,$a_2$を$p$を用いて表せ.
(2)$k$を自然数とする.関数$f_k(x)$が極大値と極小値をもつならば,関数$f_{k+1}(x)$も極大値と極小値をもつことを示せ.
(3)$a_{n+1}$と$a_n$の関係式を$p$を用いて表せ.
(4)一般項$a_n$を$p$を用いて表せ.
静岡大学 国立 静岡大学 2014年 第4問
$p$を$\displaystyle 0<p<\frac{1}{6}$を満たす実数とする.次のように数列$\{a_n\}$を帰納的に定義する.$a_1=0$とし,第$n$項$a_n$を用いた関数
\[ f_n(x)=2x^3-3px^2+6a_nx-1 \]
が極大値と極小値をもつならば,第$n+1$項$a_{n+1}$を$f_n(x)$の極大値と極小値の和により定める.そうでないならば,$a_{n+1}=0$と定める.このとき,次の問いに答えよ.

(1)$f_1(x)$が極大値と極小値をもつことを示し,$a_2$を$p$を用いて表せ.
(2)$k$を自然数とする.関数$f_k(x)$が極大値と極小値をもつならば,関数$f_{k+1}(x)$も極大値と極小値をもつことを示せ.
(3)$a_{n+1}$と$a_n$の関係式を$p$を用いて表せ.
(4)一般項$a_n$を$p$を用いて表せ.
岩手大学 国立 岩手大学 2014年 第4問
次のように定義される数列$\{a_n\}$について,次の問いに答えよ.
\[ a_1=1,\quad a_2=3,\quad a_{n+2}-4a_{n+1}+3a_n=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)数列$\{b_n\}$を$b_n=a_{n+1}-3a_n$で定義するとき,一般項$b_n$を求めよ.
(2)一般項$a_n$を求めよ.
(3)$\displaystyle x \neq \frac{1}{3}$のとき,$\displaystyle S_n=\sum_{k=1}^n ka_kx^{k-1}$を求めよ.
岩手大学 国立 岩手大学 2014年 第4問
次のように定義される数列$\{a_n\}$について,次の問いに答えよ.
\[ a_1=1,\quad a_2=3,\quad a_{n+2}-4a_{n+1}+3a_n=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)数列$\{b_n\}$を$b_n=a_{n+1}-3a_n$で定義するとき,一般項$b_n$を求めよ.
(2)一般項$a_n$を求めよ.
(3)$\displaystyle x \neq \frac{1}{3}$のとき,$\displaystyle S_n=\sum_{k=1}^n ka_kx^{k-1}$を求めよ.
帯広畜産大学 国立 帯広畜産大学 2014年 第2問
関数$f(x)$を$\displaystyle f(x)=-7+k \int_0^6 |x-u| \, du$と定義する.ただし,$k$は定数,$f(3)=-5$である.次の各問に答えなさい.

(1)$k$の値を求めなさい.
(2)$y=f(x)$のグラフの概形を図示しなさい.
(3)実数$s,\ t$が条件$0 \leqq s \leqq 20$,$0 \leqq t \leqq 20$を満たしながら動くとき,$xy$座標平面上の点
\[ \mathrm{P} \left( \frac{1}{2}s+\frac{1}{10}t,\ -\frac{1}{4}s-\frac{1}{5}t \right) \]
が動く領域$D$を求めなさい.
(4)不等式$y \geqq f(x)$の表す領域を$E$とするとき,領域$E$と領域$D$の共通部分の面積を求めなさい.
スポンサーリンク

「定義」とは・・・

 まだこのタグの説明は執筆されていません。