タグ「定義」の検索結果

19ページ目:全248問中181問~190問を表示)
大阪市立大学 公立 大阪市立大学 2012年 第1問
$t$を正の定数とする.次の問いに答えよ.

(1)正の実数$x$に対して定義された関数$g(x) = e^x x^{-t}$について,$g(x)$の最小値を$t$を用いて表せ.
(2)すべての正の実数$x$に対して$e^x > x^t$が成り立つための必要十分条件は,$t<e$であることを示せ.
高知工科大学 公立 高知工科大学 2012年 第1問
次の各問に答えよ.

(1)$x^3-2x^2+7x-1=(x-1)^3+a(x-1)^2+b(x-1)+c$が$x$についての恒等式であるとき,定数$a,\ b,\ c$の値を求めよ.
(2)方程式$|x|+3 |x-2|=x+1$を解け.
(3)平行四辺形OABCにおいて,辺AB上に点Dを
\[ \text{AD}:\text{DB}=2:1 \]
を満たすようにとり,BCの中点をEとする.直線ODと直線AEとの交点をFとするとき,線分の長さの比の値$\displaystyle \frac{\text{OF}}{\text{OD}},\ \frac{\text{AF}}{\text{AE}}$を求めよ.
(4)定数$a$を含む開区間で定義された関数$y=f(x)$の$x=a$における微分系数$f^{\, \prime}(a)$の定義を書け.また,その定義に従って,実数全体で定義された関数$f(x)=x^2$の$x=a$における微分系数$f^{\, \prime}(a)$を求めよ.
福島県立医科大学 公立 福島県立医科大学 2012年 第2問
以下の各問いに答えよ.

(1)$e$は自然対数の底とし,$a$は正の実数とする.以下の問いに答えよ.

(i) $x>0$で定義された関数$f(x)=a \log x-x$の増減を調べ,極値を求めよ.
(ii) $\displaystyle \lim_{x \to \infty} x^a e^{-2x}=0$を示せ.
(iii) 極限値$\displaystyle \lim_{x \to \infty} \int_0^x t^2e^{-2t} \, dt$を求めよ.

(2)$0<t<\pi$とする.曲線$\displaystyle C:y=\sin \frac{x}{2} (0 \leqq x \leqq \pi)$上の点$\displaystyle \mathrm{P} \left( t,\ \sin \frac{t}{2} \right)$における$C$の接線を$\ell_1$,点$\mathrm{P}$と原点を通る直線を$\ell_2$とする.以下の問いに答えよ.

(i) 接線$\ell_1$と$x$軸との交点の$x$座標を$t$を用いて表せ.
(ii) $j=1,\ 2$について,直線$\ell_j$,$x$軸および直線$x=t$で囲まれた三角形を$x$軸のまわりに回転させてできた円錐の体積を$V_j$とする.また,曲線$C$,$x$軸および直線$x=t$で囲まれた図形を$x$軸のまわりに回転させてできた回転体の体積を$V$とする.$V_1$,$V_2$および$V$を$t$を用いて表せ.
(iii) 極限値$\displaystyle \lim_{\theta \to 0} \frac{\theta-\sin \theta}{\theta^3}$を求めよ.ただし,$\displaystyle \lim_{\theta \to 0} \frac{\sin \theta}{\theta}=1$は利用してよい.
北九州市立大学 公立 北九州市立大学 2012年 第2問
以下の問いの空欄$[サ]$~$[ナ]$に適する数値,式を記せ.

(1)$2$次方程式$2x^2-5x+4=0$の$2$つの解を$\alpha,\ \beta$とするとき,
\[ \alpha^2+\beta^2=[サ],\quad \frac{1}{\alpha}+\frac{1}{\beta}=[シ],\quad \alpha^3+\beta^3=[ス] \]
である.
(2)点$\mathrm{P}$が円$x^2+y^2=4$の周上を動くとき,点$\mathrm{A}(8,\ 0)$と点$\mathrm{P}$を結ぶ線分$\mathrm{AP}$を$\mathrm{AQ}:\mathrm{QP}=2:3$に内分する点$\mathrm{Q}$の軌跡は中心$[セ]$,半径$[ソ]$の円である.
(3)$0 \leqq \theta<2\pi$とする.方程式$\sqrt{3} \sin \theta+\cos \theta+1=0$を解くと$\theta=[タ],\ [チ]$である.
(4)$4^{45}$は$[ツ]$桁の数である.また,$\displaystyle \left( \frac{1}{8} \right)^{17}$は,小数第$[テ]$位にはじめて$0$でない数字が現れる.ただし,$\log_{10}2=0.3010$とする.
(5)$a_1=1$,$a_{n+1}=a_n+n (n=1,\ 2,\ 3,\ \cdots)$で定義される数列$\{a_n\}$の一般項は,$a_n=[ト]$である.また,数列$\{a_n\}$の初項から第$n$項までの和は,$S_n=[ナ]$である.
静岡大学 国立 静岡大学 2011年 第2問
自然数$a,\ b$に対して,$a = bq+r,\ 0 \leqq r \leqq b-1$を満たす整数$q,\ r$がただ1組存在する.このとき$q$は$a$を$b$で割った商,$r$は$a$を$b$で割った余りという.自然数$a_0,\ a_1$が与えられたとき,数列$\{a_n\},\ \{q_n\}$は次の性質を満たすものとする.

\mon[(i)] $q_n$は$a_{n-1}$を$a_n$で割った商
\mon[(ii)] $\biggl( \begin{array}{c}
a_n \\
a_{n+1}
\end{array} \biggr)=\biggl( \begin{array}{cc}
0 & 1 \\
1 & -q_n
\end{array} \biggr) \biggl( \begin{array}{c}
a_{n-1} \\
a_{n}
\end{array} \biggr)$

ただし,$a_{N+1}=0$となる自然数$N$が存在すれば,$n>N$に対して$q_n$および$a_{n+1}$は定義しない.このとき,次の問いに答えよ.

(1)$a_{N+1}=0$となる自然数$N$が存在することを証明せよ.
(2)$a_N=aa_0+ba_1$を満たす整数$a,\ b$が存在することを証明せよ.
(3)$a_N$は$a_0$と$a_1$の最大公約数であることを証明せよ.
島根大学 国立 島根大学 2011年 第2問
数列$\{a_n\}$と$\{b_n\}$を
\[ a_1=3, b_1=\frac{3}{2}, a_{n+1}=b_n, b_{n+1}=\frac{a_n+b_n}{2} \quad (n \geqq 1) \]
で定義する.このとき,次の問いに答えよ.

(1)すべての$n \geqq 1$に対して$a_{n+1}+\alpha b_{n+1}=\beta(a_n+\alpha b_n)$が成り立つ$\alpha,\ \beta$の値の組をすべて求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)$a_n=2$となる自然数$n$の存在性を調べよ.
岩手大学 国立 岩手大学 2011年 第6問
$x>0$で定義された関数$\displaystyle f(x)=\frac{(\log x)^2}{\sqrt{x}}$について,次の問いに答えよ.

(1)$y=f(x)$の増減を調べ,極値を求めよ.
(2)曲線$y=f(x)$と2直線$x=e$,$x=e^2$および$x$軸で囲まれた図形を$x$軸のまわりに1回転して得られる立体の体積を求めよ.
佐賀大学 国立 佐賀大学 2011年 第2問
多項式$f(x)=x^4-x^3+cx^2-11x+d$について,$f(1+\sqrt{2})=0$が成り立つとする.ここで,$c,\ d$は有理数とする.次の問いに答えよ.

(1)$S=\{a+\sqrt{2}b \;|\; a,\ b \text{は有理数} \}$とする.集合$S$の元$z=a+\sqrt{2}b \ $(ただし,$a,\ b$は有理数)に対して,$j(z)=a-\sqrt{2}b$と定義する.$S$の任意の元$z,\ w$に対して,$j(z+w)=j(z)+j(w)$および$j(zw)=j(z)j(w)$が成り立つことを示せ.
(2)(1)を用いて,$S$の元$z$が$f(z)=0$を満たせば,$f(j(z))=0$が成り立つことを示せ.このことを用いて,$f(1-\sqrt{2})=0$を示せ.
(3)有理数$c,\ d$を求め,$f(x)$を有理数の範囲で因数分解せよ.
佐賀大学 国立 佐賀大学 2011年 第2問
多項式$f(x)=x^4-x^3+cx^2-11x+d$について,$f(1+\sqrt{2})=0$が成り立つとする.ここで,$c,\ d$は有理数とする.次の問いに答えよ.

(1)$S=\{a+\sqrt{2}b \;|\; a,\ b \text{は有理数} \}$とする.集合$S$の元$z=a+\sqrt{2}b \ $(ただし,$a,\ b$は有理数)に対して,$j(z)=a-\sqrt{2}b$と定義する.$S$の任意の元$z,\ w$に対して,$j(z+w)=j(z)+j(w)$および$j(zw)=j(z)j(w)$が成り立つことを示せ.
(2)(1)を用いて,$S$の元$z$が$f(z)=0$を満たせば,$f(j(z))=0$が成り立つことを示せ.このことを用いて,$f(1-\sqrt{2})=0$を示せ.
(3)有理数$c,\ d$を求め,$f(x)$を有理数の範囲で因数分解せよ.
大分大学 国立 大分大学 2011年 第4問
次の問いに答えなさい.

(1)不定積分$\displaystyle \int t^2e^t \, dt$を求めなさい.
(2)$x \geqq 0$で定義された関数
\[ F(x) = -x+\int_0^x (xt-t^2)e^t \, dt \]
の最小値とそのときの$x$の値を求めなさい.
スポンサーリンク

「定義」とは・・・

 まだこのタグの説明は執筆されていません。