タグ「定義」の検索結果

17ページ目:全248問中161問~170問を表示)
茨城大学 国立 茨城大学 2012年 第3問
数列$\{a_n\}$を$\displaystyle a_n=\frac{1}{n!}\int_0^1 t^ne^{-t} \, dt \ (n=1,\ 2,\ 3,\ \cdots)$と定義する.ただし,$e$は自然対数の底とする.次の各問に答えよ.

(1)$a_1$を求めよ.
(2)$0 \leqq t \leqq 1$のとき$t^n \leqq t$であることを用いて$\displaystyle a_n \leqq \frac{a_1}{n!} \ (n=1,\ 2,\ 3,\ \cdots)$を示せ.
(3)極限$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
(4)$\displaystyle a_{n+1}=a_n-\frac{1}{e(n+1)!} \ (n=1,\ 2,\ 3,\ \cdots)$を示せ.
(5)極限$\displaystyle \lim_{n \to \infty} \left( \frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} \right)$を求めよ.
宮城教育大学 国立 宮城教育大学 2012年 第5問
$I(a)$を
\[ I(a)=\int_{-1}^1 |x^2-a| \, dx \]
で定義する.このとき次の問いに答えよ.

(1)$a \leqq 0$のとき$I(a)$の最小値を求めよ.
(2)$a \geqq 1$のとき$I(a)$の最小値を求めよ.
(3)$0<a<1$のとき,$t=\sqrt{a}$とおいて$I(a)$を$t$で表し,$I(a)$の最小値を求めよ.
浜松医科大学 国立 浜松医科大学 2012年 第4問
$1$個のさいころを$3$回投げる.$1$回目,$2$回目,$3$回目に出る目の数をそれぞれ$X_1,\ X_2,\ X_3$として,$3$つの確率変数
\[ Y=4X_1+X_2,\quad Z_1=2X_1+3X_2,\quad Z_2=2X_1+3X_3 \]
を定める.$1$から$6$までの目は等確率で出るものとするとき,以下の問いに答えよ.

(1)数の集合$U=\{x \;|\; x \text{は整数かつ}5 \leqq x \leqq 30 \}$を全体集合として,
\[ \begin{array}{l}
\displaystyle S=\left\{ x \;\bigg|\; x \in U \text{かつ} P(Y=x)>\frac{1}{36} \right\} \\ \\
\displaystyle T=\left\{ x \;\bigg|\; x \in U \text{かつ} P(Z_1=x)>\frac{1}{36} \right\}
\end{array} \]
を定める.部分集合$S$と$T$の要素をそれぞれ列挙せよ.
(2)$Y$の値が$S$に属するという事象を$A$とし,$i=1,\ 2$に対して$Z_i$の値が$T$に属するという事象を$B_i$とする.次の問いに答えよ.

(i) $i=1,\ 2$に対し,等式$P(A \cap B_i)=P(A)P(B_i)$が成り立つかどうか,それぞれ調べよ.
(ii) 条件つき確率$P_A(B_1 \cap B_2)$の定義式をかき,その値を求めよ.
京都教育大学 国立 京都教育大学 2012年 第6問
$2$つの関数
\[ f(x)=x^3+1,\quad g(x)=f(1)+f^\prime(1)(x-1)+\frac{1}{2}f^{\prime\prime}(1)(x-1)^2 \]
について,次の問に答えよ.

(1)導関数の定義に従って$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$g(x)$を求めよ.
(3)$0 \leqq x \leqq 1$において常に$f(x) \leqq g(x)$であることを証明せよ.
(4)$2$つの曲線$y=f(x)$,$y=g(x)$と$y$軸で囲まれる図形の面積を求めよ.
茨城大学 国立 茨城大学 2012年 第2問
実数$x,\ y$に対して,$x * y$を$x * y=x+y+xy$により定義する.次の各問に答えよ.

(1)実数$p,\ q,\ r$に対して$p * (q * r)-(p * q) * r$を求めよ.
(2)$a_1=2$,$a_{n+1}=a_n * 2 (n=1,\ 2,\ 3,\ \cdots)$で定められた数列$\{a_n\}$の一般項$a_n$は$a_n=3^n-1$となることを数学的帰納法を用いて証明せよ.
(3)実数$p$に対して$b_1=p$,$b_{n+1}=b_n * 2 (n=1,\ 2,\ 3,\ \cdots)$で定められた数列$\{b_n\}$の一般項$b_n$を求めよ.
早稲田大学 私立 早稲田大学 2012年 第1問
次の小問の解答を解答用紙の所定欄に記入せよ.

(1)実数$a,\ b$が$0 \leqq a \leqq \pi$,$a<b$をみたすとき,
\[ I(a,b) = \int_a^b e^{-x}\sin x\;dx \]
とおく.ただし,$e$は自然対数の底とする.
\[ \lim_{b \to \infty} I(a,\ b) = 0 \]
が成立するように$a$を定めよ.

(2)行列$A=
\begin{pmatrix}
\;\;\; a & b \;\;\;\; \\
\;\;\; c & d \;\;\;\;
\end{pmatrix}
$は$ad-bc=2$および$a+d=3$をみたし,かつ,ある行列
\[ B =
\begin{pmatrix}
\;\;\; 1 & 1 \;\;\;\; \\
\;\;\; 0 & 1 \;\;\;\;
\end{pmatrix}
\begin{pmatrix}
\;\;\; \alpha & 0 \;\;\;\; \\
\;\;\; 0 & \beta \;\;\;\;
\end{pmatrix}
\begin{pmatrix}
\;\;\; 1 & 1 \;\;\;\; \\
\;\;\; 0 & 1 \;\;\;\;
\end{pmatrix}^{-1}
\]
に対して$AB=BA$をみたしている.ただし$\alpha \neq \beta$とする.このような行列$A$をすべて求めよ.

(3)$c$を正の実数として,漸化式
\[ a_n = \frac{{a_{n-1}}^2}{3^n} \quad (n \geqq 1), \qquad a_0 = c \]
で定義される数列$\{a_n\}$を考える.このとき$\displaystyle\lim_{n \to \infty} a_n = \infty$となるような$c$の範囲を求めよ.
(4)実数$t$が$1 \leqq t \leqq 2$の範囲で動くとき,$xy$平面の直線
\[ y=(3t^2-4)x-2t^3 \]
が通る範囲を$H$とする.$H$の内,直線$x=1$と$\displaystyle x=\frac{20}{9}$ではさまれる部分の面積を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[ラ]$までに当てはまる数字$0$~$9$を求めて記入せよ.ただし,分数は既約分数として表しなさい.

(1)数列$\{a_n\},\ \{b_n\} (n=1,\ 2,\ 3,\ \cdots)$は次の関係式を満たすとする.
\[ a_1=0, \quad \left\{ \begin{array}{l}
b_n=\displaystyle\frac{1}{5}a_n+1 \\
a_{n+1}=3b_n+2
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,$b_1 = [ア]$で,$n \geq 1$に対して$b_{n+1} = \displaystyle\frac{[イ]}{[ウ]} b_n + \frac{[エ]}{[オ]}$となる.これより,
\[ b_n = \displaystyle\frac{[カ]}{[キ]} - \frac{[ク]}{[ケ]} \left(\frac{[コ]}{[サ]} \right)^{n-1} \quad (n \geq 1) \]
となるので,
\[ \lim_{n \to \infty} b_n = \frac{[シ]}{[ス]}, \qquad \lim_{n \to \infty} \frac{b_{2n}-b_n}{b_{n+1}-b_n} = \frac{[セ]}{[ソ]} \]
となる。また,
\[ \sum_{n=1}^{\infty} (a_{2n}-a_n) = \frac{[タ][チ][ツ]}{[テ][ト]} \]
である.
(2)複素数$z = \cos\theta + i\sin\theta (0 \leq \theta<2\pi)$に対して,複素数$\omega$を
\[ \omega = (4+3i)z + 6i\,\overline{z} \]
で定める.ただし,$i$は虚数単位を,$\overline{z}=\cos\theta-i\sin\theta$は$z$と共役な複素数を表す.
いま$z$の実部と虚部がともに$0$以上となる範囲で$\theta$を動かす.このとき,$\omega$の実部の最大値は[ナ],最小値は[ニ]であり,$\omega \overline{\omega}$の最大値は[ヌ][ネ][ノ],最小値は[ハ][ヒ]である.ただし,$\overline{\omega}$は$\omega$と共役な複素数を表す.

(3)$x>0$で定義された微分可能な関数$f(x)$が,
\[ f^\prime(x) = 2\log x + \frac{1}{7-2e} \int_1^{e} \frac{f(t)}{t}\, dt, \quad f(1)=0 \]
を満たすとする.ここで,$f^\prime(x)$は$f(x)$の導関数,$\log$は自然対数,$e$は自然対数の底である.$f(x)$を求めると,
\[ f(x) = [フ] x\log x - \frac{[ヘ]}{[ホ]} x + \frac{[マ]}{[ミ]} \quad (x>0) \]
となる.関数$f(x)$は$\displaystyle x=e^{-\frac{[ム]}{[メ]}}$のとき,最小値
\[ -[モ]e^{-\frac{[ヤ]}{[ユ]}} + \frac{[ヨ]}{[ラ]}\]
をとる。
法政大学 私立 法政大学 2012年 第2問
$f(x)=x^2-5$として,数列$\{a_n\}$を次のように定義する.\\
\quad $a_1=3$,点$(a_n,\ f(a_n))$における曲線$y=f(x)$の接線が$x$軸と交わる点の$x$座標を$a_{n+1}$とする$(n=1,\ 2,\ 3,\ \cdots)$。\\
\quad 次の問いに答えよ.

(1)$a_{n+1}$を$a_n$で表せ.
(2)命題$P(n)$を$\lceil \sqrt{5} < a_{n+1} < a_n \rfloor$とするとき,すべての正の整数$n$に対して$P(n)$が成り立つことを数学的帰納法によって証明せよ.
(3)次の不等式が共に成り立つ1より小さい正の数$r$が存在することを示せ.

(4)$a_{n+1}-\sqrt{5} \leqq r(a_n-\sqrt{5}) \quad (n=1,\ 2,\ 3,\ \cdots)$
(5)$a_n -\sqrt{5} \leqq r^{n-1} \quad (n= 1,\ 2,\ 3,\ \cdots)$
東北学院大学 私立 東北学院大学 2012年 第6問
次の漸化式で定義される数列$a_n (n=1,\ 2,\ \cdots)$について,次の問いに答えよ.
\[ a_1=0,\quad a_2=1,\quad a_{n+2}-5a_{n+1}+6a_n=0 \]

(1)数列$b_n,\ c_n$を$b_n=a_{n+1}-2a_n,\ c_n=a_{n+1}-3a_n$と定義するとき,$b_n,\ c_n$の満たす漸化式を求めよ.
(2)数列$b_n,\ c_n$の一般項を求めよ.
(3)数列$a_n$の一般項を求めよ.
西南学院大学 私立 西南学院大学 2012年 第2問
実数$a$に対して,集合$A,\ B,\ C$および全体集合$U$が次のように定義されている.
\[ \begin{array}{l}
A=\{2,\ -a+5,\ a^2-2a+1,\ a^2+a-6 \} \\
B=\{4,\ a^2-6a+8,\ a^2-6a+9 \} \\
C=\{a^2-a-2,\ a^3-8a^2+19a-12 \} \\
U=A \cup B \cup C
\end{array} \]
いま$A \cap B \cap C=\{0\}$のとき,以下の問に答えよ.

(1)$a=[キ]$である.
(2)$A \cap B=\{ 0,\ [ク] \}$である.
(3)$(\overline{A} \cup \overline{B}) \cap (A \cup C)=\{ [ケ],\ [コ] \}$である.ただし,$[ケ]<[コ]$とする.
スポンサーリンク

「定義」とは・・・

 まだこのタグの説明は執筆されていません。