タグ「定義」の検索結果

15ページ目:全248問中141問~150問を表示)
大阪市立大学 公立 大阪市立大学 2013年 第3問
$a>1$を満たす定数$a$に対し,座標が$(a,\ a)$である点を$\mathrm{A}$とする.関数$\displaystyle y=\frac{1}{x} (x>0)$のグラフ上を動く点$\displaystyle \mathrm{P} \left( t,\ \frac{1}{t} \right)$をとり,$t>0$で定義された関数$f(t)$を,長さ$\mathrm{AP}$を用いて$f(t)=\mathrm{AP}^2$で定める.次の問いに答えよ.

(1)$f(t)$を$t$と$a$を用いて表せ.
(2)$f^\prime(t)=0$となる$t (t>0)$の値を求めよ.
(3)$\mathrm{AP}$が最小になるような点$\mathrm{P}$の座標と,$\mathrm{AP}$の最小値を求めよ.
大阪府立大学 公立 大阪府立大学 2013年 第6問
$2$次関数$\displaystyle y=\sqrt{2}x^2-\frac{\sqrt{2}}{4}$のグラフを$C$とする.以下の問いに答えよ.

(1)相異なる実数$s,\ t$に対し,$C$上の点$\displaystyle \left( s,\ \sqrt{2}s^2-\frac{\sqrt{2}}{4} \right)$,$\displaystyle \left( t,\ \sqrt{2}t^2-\frac{\sqrt{2}}{4} \right)$における$C$の法線をそれぞれ$\ell_s,\ \ell_t$で表す.$\ell_s$と$\ell_t$の交点の座標を求めよ.ただし,曲線$C$上の点$\mathrm{P}$における法線とは,$\mathrm{P}$を通り,$\mathrm{P}$における$C$の接線と垂直に交わる直線のことである.
(2)$t$を固定して$s$を$t$に近づけるとき,(1)で求めた交点の$x$座標と$y$座標が近づく値をそれぞれ$f(t)$,$g(t)$で表す.このとき,$f(t)$,$g(t)$を求めよ.
(3)(2)で求めた$f(t)$,$g(t)$を,実数全体で定義された$t$の関数とみなして,
\[ x=f(t),\quad y=g(t) \]
によって媒介変数表示される曲線を$D$とする.このとき,$C$と$D$によって囲まれた部分の面積を求めよ.
名古屋市立大学 公立 名古屋市立大学 2013年 第2問
逆行列をもつ行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$によって表される$1$次変換を考える.以下の問いに答えよ.

(1)この変換によって$xy$平面上の任意の$2$点$\mathrm{P}(x_1,\ y_1)$および$\mathrm{Q}(x_2,\ y_2)$がそれぞれ$\mathrm{P}^\prime ({x_1}^\prime,\ {y_1}^\prime)$および$\mathrm{Q}^\prime ({x_2}^\prime,\ {y_2}^\prime)$に移されるとき,$2$点間の距離が変換によって変化しない,つまり,$|\overrightarrow{\mathrm{PQ}}|^2=|\overrightarrow{\mathrm{P}^\prime \mathrm{Q}^\prime}|^2$であるための必要十分条件は,
\[ A^\mathrm{T}A=E \qquad \cdots\cdots (*) \]
であることを示せ.ただし,$A^\mathrm{T}$は$A$の行と列を入れ替えた行列要素をもつ行列,すなわち,
\[ A^\mathrm{T}=\left( \begin{array}{cc}
a & c \\
b & d
\end{array} \right) \]
である.また,$E$は単位行列である.
(2)原点のまわりの回転移動および$x$軸に関する対称移動の$1$次変換を,それぞれ,$f$および$g$とする.これらの$1$次変換を表す行列は,それぞれ,上の条件$(*)$を満たすことを確かめよ.
(3)$(2)$で考えた$1$次変換$f$および$g$を表す行列をそれぞれ$F$および$G$とし,$A=FGF^{-1}$で定義される行列$A$によって表される$1$次変換を考える.この変換によって直線$y=mx$上の任意の点がそれ自身に移されるとき,$A$を実数$m$を用いて表せ.ただし,$F^{-1}$は$F$の逆行列を表す.
(4)$(1)$で考えた点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$の座標を用いて,$S=x_1y_2-y_1x_2$および$S^{\prime}={x_1}^\prime {y_2}^\prime-{y_1}^\prime {x_2}^\prime$を定義する.$\mathrm{P}$,$\mathrm{Q}$から$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$への変換を表す行列が$(3)$で求めた$A$で与えられるとき,$S$と$S^\prime$の関係式を求めよ.
秋田県立大学 公立 秋田県立大学 2013年 第1問
$2$次関数$f(x)=-x^2-2x+1$,$g(x)=-2x^2+px+q$について,以下の設問に答えよ.ただし,$g(1)=-2$,$g(-1)=0$であり,$p,\ q$は実数の定数とする.各設問とも,解答とともに導出過程も記述せよ.

(1)$p$と$q$の値を求めよ.
(2)$f(x)<g(x)$となる$x$の値の範囲を求めよ.
(3)$h(x)$を次のように定義する.

$f(x) \geqq g(x)$の場合は$h(x)=f(x)$
$f(x)<g(x)$の場合は$h(x)=g(x)$

次に,正の実数$k$に対して$M(k)$と$m(k)$を次のように定義する.

$M(k)$は$-k \leqq x \leqq k$における$h(x)$の最大値
$m(k)$は$-k \leqq x \leqq k$における$h(x)$の最小値
(i) $M(2)$と$m(2)$の値を求めよ.
(ii) $M(k)$と$m(k)$の値を$k$を用いて表せ.
福島県立医科大学 公立 福島県立医科大学 2013年 第1問
以下の各問いに答えよ.

(1)座標平面上の直線$x+2y=6$上にあって,点$(2,\ -3)$との距離が最小になる点の座標を求めよ.
(2)座標平面上の曲線$C:x^2+xy+y^2=3$について,以下の問いに答えよ.

(i) 原点のまわりの${45}^\circ$の回転移動によって,$C$上の各点が移る曲線の方程式を求めよ.
(ii) 曲線$C$で囲まれた図形のうち,$y \geqq 0$の領域に含まれる部分の面積を求めよ.

(3)座標平面上において,曲線$C_1:y=x \log x (x \geqq 1)$と放物線$C_2:y=ax^2$がある点$\mathrm{P}$を共有し,$\mathrm{P}$において共通の接線$\ell$を持つものとする.

(i) $a$の値を求めよ.
(ii) $C_1$,$C_2$および$x$軸によって囲まれた図形の面積を$S_1$とし,$C_1$,$\ell$および$x$軸によって囲まれた図形の面積を$S_2$とする.$S_1,\ S_2$の値を求めよ.

(4)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$と$\angle \mathrm{B}$の大きさをそれぞれ$A$,$B$で表し,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺の長さをそれぞれ$a,\ b,\ c$で表す.$\displaystyle \tan \theta=\frac{3}{4}$になる$\displaystyle \theta \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$について,$\displaystyle \frac{a}{c} \cos (B-\theta)+\frac{b}{c} \cos (A+\theta)$の値を求めよ.
(5)$n$は自然数とする.導関数の定義にしたがって,関数$f(x)=x^n$の導関数を求めよ.
(6)$n$は$2$以上の自然数とする.$\displaystyle \frac{1}{2^n}$は,小数第$(n-1)$位が$2$,小数第$n$位が$5$である小数第$n$位までの有限小数で表わされることを示せ.
北海道大学 国立 北海道大学 2012年 第2問
$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$で定義された関数
\[ f(\theta) = 4\cos 2\theta\, \sin \theta \ +\ 3\!\sqrt{2}\, \cos 2\theta \ -\ 4\sin \theta \]
を考える.

(1)$x=\sin \theta$とおく.$f(\theta)$を$x$で表せ.
(2)$f(\theta)$の最大値と最小値,およびそのときの$\theta$の値を求めよ.
北海道大学 国立 北海道大学 2012年 第2問
$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$で定義された関数
\[ f(\theta) = 4\cos 2\theta \sin \theta + 3\sqrt{2} \cos 2\theta -4\sin \theta \]
を考える.

(1)$x=\sin \theta$とおく.$f(\theta)$を$x$で表せ.
(2)$f(\theta)$の最大値と最小値,およびそのときの$\theta$の値を求めよ.
(3)方程式$f(\theta) = k$が相異なる3つの解をもつような実数$k$の値の範囲を求めよ.
九州大学 国立 九州大学 2012年 第4問
$p$と$q$はともに整数であるとする.2次方程式$x^2 + px+q = 0$が実数解$\alpha,\ \beta$を持ち,条件$(|\alpha|-1)(|\beta|-1) \neq 0$をみたしているとする.このとき,数列$\{a_n\}$を
\[ a_n = (\alpha^n-1)(\beta^n-1) \quad (n = 1,\ 2,\ \cdots) \]
によって定義する.以下の問いに答えよ.

(1)$a_1,\ a_2,\ a_3$は整数であることを示せ.
(2)$(|\alpha|-1)(|\beta|-1) > 0$のとき,極限値$\displaystyle \lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n} \right|$は整数であることを示せ.
(3)$\displaystyle \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1+\sqrt{5}}{2}$となるとき,$p$と$q$の値をすべて求めよ.ただし,$\sqrt{5}$が無理数であることは証明なしに用いてよい.
信州大学 国立 信州大学 2012年 第7問
$-\sqrt{5} \leqq x \leqq \sqrt{5}$で定義される2つの関数
\begin{eqnarray}
& & f(x)=\sqrt{|x|}+\sqrt{5-x^2} \nonumber \\
& & g(x)=\sqrt{|x|}-\sqrt{5-x^2} \nonumber
\end{eqnarray}
に対し,次の問いに答えよ.

(1)関数$f(x)$と$g(x)$の増減を調べ,$y=f(x)$と$y=g(x)$のグラフの概形をかけ.
(2)2つの曲線$y=f(x),\ y=g(x)$で囲まれた図形の面積を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2012年 第1問
数列$\{a_n\},\ \{b_n\}$を次のように定義する.
\[ \left\{
\begin{array}{l}
a_1=5, b_1=3, \\
\left( \begin{array}{c}
a_{n+1} \\
b_{n+1}
\end{array} \right)=\left( \begin{array}{cc}
5 & 3 \\
3 & 5
\end{array} \right) \left( \begin{array}{c}
a_{n} \\
b_{n}
\end{array} \right) \quad (n=1,\ 2,\ 3,\ \cdots)
\end{array}
\right. \]
また,自然数$n$について$c_n=a_n^2-b_n^2$とおく.このとき以下の各問いに答えよ.

(1)$c_n$を$n$を用いて表せ.
(2)$k$を自然数とするとき,自然数$\ell$について
\[ a_{k+\ell}=a_ka_\ell + b_kb_\ell, b_{k+\ell}=b_ka_\ell+a_kb_\ell \]
が成立することを,$\ell$に関する数学的帰納法によって示せ.
(3)$n > \ell$となる自然数$n,\ \ell$について
\[ b_{n+\ell}-c_\ell b_{n-\ell}=2a_nb_\ell \]
が成立することを示せ.
(4)$2$以上の自然数$n$について
\[ a_{2n}+\sum_{m=1}^{n-1}c_{n-m}a_{2m}=\frac{b_{2n+1}}{2b_1}-\frac{c_n}{2} \]
が成立することを示せ.
スポンサーリンク

「定義」とは・・・

 まだこのタグの説明は執筆されていません。