タグ「定義」の検索結果

10ページ目:全248問中91問~100問を表示)
秋田大学 国立 秋田大学 2014年 第2問
条件$a_1=0$,$a_{n+1}=4a_n+3 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$がある.関数$f_n(x)$と$g(x)$が
\[ \begin{array}{l}
f_n(x)=a_nx^2+a_n+1 \\
g(x)=x^3+3x^2-9x+4 \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
で定義されるとき,次の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.また,$\displaystyle \sum_{k=1}^n a_k$を求めよ.
(2)関数$y=|f_2(x)-g(x)|$のグラフをかけ.また,$-3 \leqq x \leqq 3$の範囲で$y$の値の最大値とそのときの$x$の値を求めよ.
秋田大学 国立 秋田大学 2014年 第2問
条件$a_1=0$,$a_{n+1}=4a_n+3 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$がある.関数$f_n(x)$と$g(x)$が
\[ \begin{array}{l}
f_n(x)=a_nx^2+a_n+1 \\
g(x)=x^3+3x^2-9x+4 \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
で定義されるとき,次の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.また,$\displaystyle \sum_{k=1}^n a_k$を求めよ.
(2)関数$y=|f_2(x)-g(x)|$のグラフをかけ.また,$-3 \leqq x \leqq 3$の範囲で$y$の値の最大値とそのときの$x$の値を求めよ.
福島大学 国立 福島大学 2014年 第4問
次のように定義される数列$\{a_n\}$について,以下の問いに答えなさい.
\[ a_1=2,\quad a_{n+1}=\frac{2{a_n}^3+1}{3{a_n}^2} \]

(1)$a_2$を求めなさい.
(2)任意の自然数$n$について$a_n>1$が成り立つことを数学的帰納法を用いて示しなさい.
(3)任意の自然数$n$について$a_n>a_{n+1}$が成り立つことを示しなさい.
慶應義塾大学 私立 慶應義塾大学 2014年 第5問
次の設問に答えなさい.

(1)有理数の定義を書きなさい.
(2)次のそれぞれの命題の真偽を記入し,真の場合はそれを証明し,偽の場合はその理由を述べなさい.

(i) $\sqrt{5}$は無理数である.
(ii) $r,\ s$がともに有理数ならば,積$rs$は有理数である.
(iii) $\alpha$が無理数で,$r$が$0$でない有理数ならば,積$\alpha r$は無理数である.
\mon[$\tokeishi$] $\alpha,\ \beta$がともに無理数ならば,積$\alpha \beta$は無理数である.
大阪工業大学 私立 大阪工業大学 2014年 第3問
数列$\{a_n\}$が$a_1=1$,$a_{n+1}=a_n(a_n+2) (n=1,\ 2,\ 3,\ \cdots)$で定義されるとき,次の空所を埋めよ.

(1)$b_n=a_n+1$とおくと,$b_1=[ア]$であり,$b_3=[イ]$である.また,$b_{n+1}$を$b_n$を用いて表すと,$b_{n+1}=[ウ]$となる.
(2)$c_n=\log_2b_n$とおくと,数列$\{c_n\}$は初項$[エ]$,公比$[オ]$の等比数列である.
(3)$c_8=[カ]$だから,$a_8$は$[キ]$桁の整数である.ただし,$\log_{10}2=0.3010$とする.
中部大学 私立 中部大学 2014年 第2問
$0<x<\pi$で定義された関数$\displaystyle f(x)=\frac{1}{\sin x}$について,次の問いに答えよ.

(1)$\displaystyle f \left( \frac{\pi}{3} \right)$を求めよ.
(2)$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.また,$f^{\prime\prime}(x)>0$となることを示せ.これらの結果を増減表に書き,曲線$y=f(x)$のグラフの概形をかけ.
(3)$0 \leqq t \leqq 1$に対し,$0<a \leqq x<\pi$を満たす任意の$a$と$x$を考えると,
\[ tf(a)+(1-t)f(x) \geqq f(at+(1-t)x) \]
が成り立つことを示せ.
(4)三角形$\mathrm{ABC}$のそれぞれの角を$A,\ B,\ C$とすると$\displaystyle \frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C} \geqq 2 \sqrt{3}$が成り立つことを証明せよ.
早稲田大学 私立 早稲田大学 2014年 第1問
次の空欄にあてはまる数または式を解答欄に記入せよ.

$\{a_n\}$を,初項$1$,公差$d$の等差数列とし,
\[ P_n=r^{a_1} \cdot r^{a_2} \cdot \cdots \cdot r^{a_n} \]
と定義する.ただし,$r$は$r>1$を満たす定数である.$P_n$が$P_3=P_9$を満たしているならば,公差$d=[ア]$である.このとき,$P_n$は,$n=[イ]$のとき,最大値$[ウ]$をとる.また,$P_n<1$となる最小の$n$は,$n=[エ]$である.
早稲田大学 私立 早稲田大学 2014年 第4問
関数$f(x)$を次の積分で定義する.
\[ f(x)=\int_x^{x+\log 2} |e^{2t|-e^t-2} \, dt \]
次の問に答えよ.

(1)$g(t)=e^{2t}-e^t-2$のグラフを描け.
(2)$f(x)$を求めよ.
(3)$f(x)$が極値をとる$x$を求めよ.
早稲田大学 私立 早稲田大学 2014年 第4問
$2$個以上の正の整数を要素とする有限集合を$A$とする.

$A$のどの$2$数も一方が他方を割り切るとき$A$は良い集合であるといい,$A$のどの$2$数も互いに他を割り切らないとき$A$は悪い集合であるという.
また,$A$の良い部分集合の要素の個数の最大値,すなわち,
\[ \max \left\{ n(B) \;|\; B \subset A,\ n(B) \geqq 2 \text{かつ} B \text{は良い集合} \right\} \]
を$A$の最良数と定義し,$A$の悪い部分集合の要素の個数の最大値,すなわち,
\[ \max \left\{ n(B) \;|\; B \subset A,\ n(B) \geqq 2 \text{かつ} B \text{は悪い集合} \right\} \]
を$A$の最悪数と定義する.
たとえば,$A=\{2,\ 3,\ 5,\ 7,\ 11,\ 14,\ 15,\ 77,\ 154,\ 225,\ 231,\ 308 \}$のとき,$A$の良い部分集合は$\{7,\ 77,\ 231\}$,$\{7,\ 14,\ 154,\ 308 \}$,$\{11,\ 77,\ 154,\ 308 \}$などであり,$A$の最良数は$4$である.また,$A$の悪い部分集合は$\{231,\ 308 \}$,$\{14,\ 15,\ 77 \}$,$\{2,\ 7,\ 11,\ 15 \}$,$\{2,\ 3,\ 5,\ 7,\ 11 \}$などであり,$A$の最悪数は$5$である.
$k$を$2$以上の整数とするとき,次の問いに答えよ.

(1)$n(A)=k^2$で,かつ最良数も最悪数も$k$である集合$A$が存在することを証明せよ.
(2)$n(A) \geqq k^2+1$ならば,$A$の最良数または$A$の最悪数のどちらかは$k+1$以上であることを証明せよ.
(3)要素数が$2014$で,かつ最良数と最悪数が等しいような集合,すなわち,
\[ n(A)=2014 \quad \text{かつ} \quad (A \text{の最良数})=(A \text{の最悪数}) \]
を満たす集合$A$を考える.このような集合たちの中で最良数が最小となる集合の例を挙げよ.
久留米大学 私立 久留米大学 2014年 第5問
半径$1$の円に内接する正$n$角形を$N_1^{(n)}$,$N_1^{(n)}$に内接する円を$C_1^{(n)}$とし,さらに$C_1^{(n)}$に内接する正$n$角形を$N_2^{(n)}$,$N_2^{(n)}$に内接する円を$C_2^{(n)}$とする.同様にして$N_3^{(n)}$,$C_3^{(n)}$,$N_4^{(n)}$,$C_4^{(n)}$,$\cdots$,$N_k^{(n)}$,$C_k^{(n)}$を定義する.このとき,円$C_k^{(n)}$の半径$R_k^{(n)}$と正$n$角形$N_k^{(n)}$の面積$S_k^{(n)}$は,それぞれ$n$と$k$を用いて$R_k^{(n)}=[$12$]$,$S_k^{(n)}=[$13$]$と表すことができる.また,$\displaystyle S_m=\sum_{k=1}^m S_k^{(n)}$とおいたとき,$\displaystyle \lim_{m \to \infty}S_m=[$14$]$である.ここで,$n,\ k$は正の整数とする.
スポンサーリンク

「定義」とは・・・

 まだこのタグの説明は執筆されていません。