タグ「定積分」の検索結果

9ページ目:全871問中81問~90問を表示)
獨協医科大学 私立 獨協医科大学 2016年 第5問
$xy$平面上の放物線$y=x^2$の$0 \leqq x \leqq 1$に対応する部分の長さを$L$とする.$L$の値を次のようにして求めよう.$L$は定積分
\[ L=\int_0^1 \sqrt{1+[ア]x^2} \, dx \]
で定まる.この定積分を計算するために$\displaystyle x=\frac{e^t-e^{-t}}{4}$として,置換積分を行う.このとき
\[ \frac{dx}{dt}=\frac{e^t+e^{-t}}{4} \]
であり
\[ \sqrt{1+[ア]x^2}=\frac{e^t+e^{-t}}{[イ]} \]
である.

また,$\displaystyle \frac{e^t-e^{-t}}{4}=1$となる$t$の値を$\alpha$とすると,$x$が$0 \to 1$と変化するとき,$t$は$[ウ] \to \alpha$と変化するので,$L$を定める定積分は
\[ L=\frac{1}{[エ]} \int_{\mkakko{ウ}}^\alpha (e^t+e^{-t})^{\mkakko{オ}} \, dt \]
となる.ここで$X=e^\alpha$とおくと,$X$は$2$次方程式
\[ X^2-[カ]X-[キ]=0 \]
の解である.$X>0$なので
\[ X=[ク]+\sqrt{[ケ]} \]
である.これを用いて$\alpha$の値を定め,$L$の値を計算すると
\[ L=\frac{\sqrt{[コ]}}{[サ]}+\frac{1}{[シ]} \log \left( [ス]+\sqrt{[セ]} \right) \]
である.
明治大学 私立 明治大学 2016年 第3問
次の空欄に当てはまる$0$から$9$までの数字を入れよ.ただし,空欄$[サシ]$は$2$桁の数をあらわす.

(1)$k$を自然数とすると
\[ \int_0^\pi \sin^k x \cos x \, dx=[ア] \]
である.
(2)直線$y=\sqrt{3}x$を$\ell$とし,曲線$y=\sqrt{3}x+\sin^2 x$を$C$とする.直線$\ell$上に点$\mathrm{A}$をとり,点$\mathrm{A}$において直線$\ell$と直交する直線を$L$とする.関数$y=\sqrt{3}x+\sin^2 x$は$x$に関する単調増加関数であるので,直線$L$と曲線$C$の共有点は$1$点のみである.その共有点を$\mathrm{B}(t,\ \sqrt{3}t+\sin^2 t)$とする.点$\mathrm{A}$と点$\mathrm{B}$の距離を$h$とおくと,
\[ h=\frac{1}{[イ]} \sin^2 t \]
となる.また,原点$\mathrm{O}$と点$\mathrm{A}$の距離を$p$とする.点$\mathrm{A}$の$x$座標が$0$以上であるときは
\[ p=[ウ]t+\frac{\sqrt{[エ]}}{[オ]} \sin^2 t \]
となる.この等式の右辺を$f(t)$とおく.
$0 \leqq x \leqq \pi$の範囲で曲線$C$と直線$\ell$で囲まれた図形を考え,その図形を直線$\ell$の周りに$1$回転させてできる立体の体積を$V$とすると,$\displaystyle V=\pi \int_0^{\mkakko{カ} \pi} h^2 \, dp$となる.ここで,$p=f(t)$とおいて置換積分すれば,
\[ V=\frac{\pi}{[キ]} \int_0^{\pi} \sin^4 t \, dt \]
が成り立つ.$\displaystyle \int_0^{\pi} \sin^4 t \, dt=\frac{[ク]}{[ケ]} \pi$より,$\displaystyle V=\frac{[コ]}{[サシ]} \pi^2$である.
東京女子大学 私立 東京女子大学 2016年 第5問
$\mathrm{A}$と$\mathrm{B}$が続けて試合を行い,先に$3$勝したほうを優勝とする.各試合で$\mathrm{A}$の勝つ確率は$p$であり,引き分けはないものとする.$\mathrm{A}$が$1$回目の試合で勝ったときに,$\mathrm{A}$が優勝する確率を$F(p)$とする.このとき,以下の設問に答えよ.

(1)$F(p)$を$p$で表せ.

(2)定積分$\displaystyle \int_0^1 F(p) \, dp$を求めよ.
中京大学 私立 中京大学 2016年 第7問
次の$2$つの定積分を求めると,
\[ \int_0^{\frac{\pi}{2}} 3 \sin 3x \, dx=[ア],\quad \int_0^{\frac{\pi}{2}} tx^2 \sin x \, dx=\left( \pi-[イ] \right)t \]
であり,定積分$\displaystyle \int_0^{\frac{\pi}{2}} \left\{ 3 \sin 3x-tx^2 \sin x+(t-1)^2 \right\} \, dx$の最小値は
\[ -\frac{[ウ]}{[エ]} \pi-\frac{[オ]}{\pi}+[カ] \]
である.ただし,$t$は実数とする.
甲南大学 私立 甲南大学 2016年 第4問
$a,\ b$は正の実数で,$b<1$とする.
\[ c=a-b-ab,\quad I=\int_0^a \frac{x}{1+x} \, dx+\int_0^{-b} \frac{x}{1+x} \, dx-ab \]
とおくとき,以下の問いに答えよ.

(1)不等式$c>-1$が成り立つことを証明せよ.
(2)等式$I=c-\log (c+1)$が成り立つことを証明せよ.
(3)不等式$I \geqq 0$が成り立つことを証明せよ.また,$I=0$が成り立つための$a,\ b$が満たすべき条件を求めよ.
大阪工業大学 私立 大阪工業大学 2016年 第3問
関数$\displaystyle f(x)=\frac{\log x}{(x+e)^2}$について,次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$\displaystyle \frac{e}{x(x+e)}=\frac{A}{x}+\frac{B}{x+e}$が,$x$についての恒等式となるような定数$A,\ B$の値を求めよ.
(2)不定積分$\displaystyle \int \frac{1}{x(x+e)} \, dx$を求めよ.
(3)部分積分法を用いて,定積分$\displaystyle \int_1^{e^2} f(x) \, dx$を求めよ.
福岡大学 私立 福岡大学 2016年 第6問
関数$f(x)=2 \cos x-\sin 2x (0 \leqq x \leqq 2\pi)$について,次の問いに答えよ.

(1)関数$f(x)$の極値を求めよ.

(2)定積分$\displaystyle \int_0^{2\pi} |f(x)| \, dx$を求めよ.
昭和薬科大学 私立 昭和薬科大学 2016年 第1問
次の問いに答えよ.

(1)赤球と白球を合わせて$13$個の球が入っている袋から同時に$2$個の球を取り出す.$2$個の球が同じ色である確率が$\displaystyle \frac{7}{13}$であるとき,この袋には$[ア]$個の赤球が入っている.ただし,赤球の個数は白球の個数より多いとする.
(2)$\triangle \mathrm{ABC}$は$\mathrm{AB}=\mathrm{AC}$の二等辺三角形であり,$\mathrm{BC}=2$とする.$\triangle \mathrm{ABC}$の面積が$2 \sqrt{2}$のとき,$\displaystyle \cos A=\frac{[イ]}{[ウ]}$である.
(3)不等式$\sqrt{(x+2)^2}+\sqrt{(2x-3)^2} \leqq 4$の解は$\displaystyle [エ] \leqq x \leqq \frac{[オ]}{[カ]}$である.
(4)分母が$12$である正の既約分数を値が小さい順に並べた数列
\[ \frac{1}{12},\ \frac{5}{12},\ \frac{7}{12},\ \frac{11}{12},\ \frac{13}{12},\ \cdots \]
の初項から第$n$項までの和を$S_n$とすると,$S_4=[キ]$及び$S_8=[ク]$であり,

$\displaystyle S_{39}=\frac{\kakkofour{ケ}{コ}{サ}{シ}}{[ス][セ]}$である.
(5)$\displaystyle \left( \displaystyle\frac{1}{45} \right)^{100}$を小数で表したとき,小数第$[ソ][タ][チ]$位に初めて$0$でない数字が現れる.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(6)$x$の関数$\displaystyle f(x)=\int_1^x y^2(y-3) \, dy$は$x=[ツ]$のとき最小値$[テ][ト]$をとる.
千葉工業大学 私立 千葉工業大学 2016年 第1問
次の各問に答えよ.

(1)$\displaystyle \frac{3-i}{3+i}=\frac{[ア]-[イ]i}{[ウ]}$(ただし,$i^2=-1$)である.
(2)$x$の$2$次方程式$x^2-2(k-4)x+2k=0$が重解をもつような定数$k$の値は小さい順に$[エ]$,$[オ]$である.
(3)$2$次関数$\displaystyle y=\frac{1}{3}x^2-6x+35$のグラフは,放物線$\displaystyle y=\frac{1}{3}x^2$を$x$軸方向に$[カ]$,$y$軸方向に$[キ]$だけ平行移動した放物線である.
(4)$10$個の値$1,\ 3,\ 8,\ 5,\ 8,\ [ク],\ 3,\ 7,\ 7,\ 1$からなるデータの平均値は$5$,最頻値は$[ケ]$,中央値は$[コ]$である.
(5)$x>0$において,$\displaystyle \left( x-\frac{1}{2} \right) \left( 2-\frac{9}{x} \right)$は$\displaystyle x=\frac{[サ]}{[シ]}$のとき,最小値$[スセ]$をとる.
(6)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$から異なる$3$個の数字を使ってできる$3$桁の整数は$[ソタ]$個あり,そのうち偶数のものは$[チツ]$個ある.
(7)$0 \leqq \theta<2\pi$とする.$\displaystyle \cos 3\theta=\frac{1}{2}$をみたす$\theta$のうち,最大のものは$\displaystyle \frac{[テト]}{[ナ]} \pi$である.
(8)$\displaystyle \int_{-2}^1 (x^3-3x+2) \, dx=\frac{[ニヌ]}{[ネ]}$である.
千葉工業大学 私立 千葉工業大学 2016年 第4問
$x$の$2$次関数$f_1(x),\ f_2(x),\ \cdots,\ f_n(x),\ \cdots$を条件

$f_1(x)=x^2-5x,$

$\displaystyle f_{n+1}(x)=x^2 \int_0^2 \{ t{f_n}^\prime(t)-f_n(t) \} \, dt+x \int_0^2 f_n(t) \, dt \quad (n=1,\ 2,\ 3,\ \cdots)$

により定める.さらに,数列$\{a_n\}$,$\{b_n\} (n=1,\ 2,\ 3,\ \cdots)$を
\[ f_n(x)=a_nx^2+b_nx \]
により定める.このとき,次の問いに答えよ.

(1)${f_n}^\prime(x)=[ア]a_nx+b_n$であり,数列$\{a_n\}$,$\{b_n\}$は
\[ a_{n+1}=\frac{[イ]}{[ウ]}a_n,\quad b_{n+1}=\frac{[エ]}{[オ]}a_n+[カ]b_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたす.
(2)$\displaystyle a_n=\left( \frac{[キ]}{[ク]} \right)^{n-1} (n=1,\ 2,\ 3,\ \cdots)$であり,$\displaystyle c_n=\frac{b_n}{{[カ]}^{n-1}}$とおくと,$\displaystyle c_{n+1}-c_n=\left( \frac{[ケ]}{[コ]} \right)^n (n=1,\ 2,\ 3,\ \cdots)$が成り立つ.
(3)$\displaystyle f_n(x)=\left( \frac{[キ]}{[ク]} \right)^{n-1}x^2+\left\{ [サ] \cdot \left( \frac{[シ]}{[ス]} \right)^{n-1}-[セ] \cdot {[ソ]}^{n-1} \right\} x$
である.
(4)$x$の方程式$f_n(x)=0$の$x=0$とは異なる解を$x=p_n$とする.不等式$p_n>M$がすべての正の整数$n$に対して成り立つような定数$M$のうち,最大の整数は$M=[タチ]$であり,$[タチ]<p_n<[タチ]+1$となるような最小の$n$は$[ツ]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
スポンサーリンク

「定積分」とは・・・

 まだこのタグの説明は執筆されていません。