タグ「定積分」の検索結果

7ページ目:全871問中61問~70問を表示)
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[サ]$に当てはまる数または式を記入せよ.

(1)$0 \leqq \theta \leqq \pi$の範囲で,$\cos^2 \theta+\sin \theta \cos \theta=0$を満たす$\theta$をすべて求めると$\theta=[ア]$である.
(2)$10$本のくじのうち当たりくじは$n$本である.同時に$2$本のくじを引いたとき,$2$本ともはずれである確率は$\displaystyle \frac{1}{15}$であった.このとき,$n=[イ]$である.
(3)$\mathrm{AB}=20$,$\mathrm{BC}=24$,$\mathrm{AC}=16$である三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$の二等分線が$\mathrm{BC}$と交わる点を$\mathrm{D}$とする.このとき,$\mathrm{BD}=[ウ]$である.
(4)頂点が反時計回りに$\mathrm{ABCDEF}$である正六角形について,$\overrightarrow{\mathrm{FB}}=a \overrightarrow{\mathrm{AB}}+b \overrightarrow{\mathrm{AC}}$と表したとき,$a=[エ]$,$b=[オ]$である.ただし,$a$と$b$は実数とする.
(5)$(3+i)(x+yi)=6+5i$を満たす実数$x,\ y$を求めると,$x=[カ]$,$y=[キ]$である.ただし,$i$は虚数単位とする.
(6)直線$\ell$に関して点$(3,\ 2)$と対称な点は$(1,\ 4)$である.このとき,直線$\ell$の方程式を$ax+by=1$とすると,$a=[ク]$,$b=[ケ]$である.
(7)$975$の正の約数の個数は$[コ]$個である.
(8)$-1 \leqq x \leqq 5$の範囲で,関数$\displaystyle f(x)=\int_{-3}^x (t^2-2t-3) \, dt$が最小値をとるのは$x=[サ]$のときである.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
次の$[ ]$にあてはまる最も適当な数または式などを記入しなさい.

(1)座標空間内の点$\mathrm{A}(1,\ 1,\ 1)$,$\mathrm{B}(2,\ -1,\ -1)$,$\mathrm{C}(-1,\ -2,\ -4)$,$\mathrm{D}(3,\ 2,\ 6)$に対して,三角形$\mathrm{ABC}$の重心を$\mathrm{M}$とし,三角形$\mathrm{ABD}$の重心を$\mathrm{N}$とする.このとき,点$\mathrm{M}$の座標は$[ア]$である.また,線分$\mathrm{MN}$を$4:3$に外分する点の座標は$[イ]$である.
(2)$\alpha=-1+2i$とする.$x=\alpha$が$2$次方程式$x^2+ax+b=0$の解であるような実数の組$(a,\ b)$は$(a,\ b)=[ウ]$である.また$\alpha^5+2 \alpha^4+3 \alpha^3+4 \alpha^2+5 \alpha$の値は$[エ]$である.
(3)関数$f(x)$が$\displaystyle f(x)=2x^2+3x+\int_0^{\frac{1}{2}} f(t) \, dt$を満たすとき,$f(x)=[オ]$である.
(4)$3$個のさいころを同時に投げるとき,以下の確率を求めなさい.

(i) 出る目の最大値が$4$以下である確率は$[カ]$である.
(ii) 出る目の最大値が$4$である確率は$[キ]$である.
(iii) 出る目の最大値が$4$であるとき,少なくとも$1$個のさいころの目が$1$である確率は$[ク]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
$f(x)$は$2$次関数であり,$f(0)=f(1)=0$を満たすとする.

(1)$\displaystyle a=\frac{1}{2}f^{\prime\prime}(0)$とする.このとき,$f(x)$は$a$を用いて$f(x)=[キ]$と表される.
(2)定積分
\[ \int_0^1 \{(f^\prime(x)-x)^2-f(x)\} \, dx \]
の値が最も小さくなるのは$f(x)=[ク]$のときである.また,そのときの定積分の値は$[ケ]$である.
以下では,$f(x)=[ク]$,$m=[ケ]$とする.
(3)関数$h(x)$は$h(0)=h(1)=0$を満たし,その導関数$h^\prime(x)$は連続であるとする.さらに,$I$と$J$を


$\displaystyle I=\int_0^1 \{(f^\prime(x)+h^\prime(x)-x)^2-(f(x)+h(x))\} \, dx$

$\displaystyle J=\int_0^1 \{(f^\prime(x)-x)^2-f(x)\} \, dx+\int_0^1 (h^\prime(x))^2 \, dx$


で定める.このとき,等式
\[ I=J \]
を証明しなさい.
(4)関数$g(x)$は$g(0)=g(1)=0$を満たし,その導関数$g^\prime(x)$は連続であるとする.このとき,不等式
\[ \int_0^1 \{(g^\prime(x)-x)^2-g(x)\} \, dx \geqq m \]
を証明しなさい.
早稲田大学 私立 早稲田大学 2016年 第1問
次の各問の解答を記入せよ.

(1)正の整数$a$に対して,ある整数$b$が存在して$63a-32b=1$を満たすとする.$a$はこのような性質を満たす正の整数のうちで最小のものであるとする.このとき$ab$の値を求めよ.
(2)$3$個のさいころを同時に投げたとき,出た目すべての積が$4$の倍数となる確率を求めよ.
(3)$a_1=a_2=1$,$a_{n+2}=a_n+a_{n+1} (n=1,\ 2,\ 3,\ \cdots)$とし,
\[ b_n=\sum_{k=1}^n a_k \quad (n=1,\ 2,\ 3,\ \cdots) \]
とおく.$b_1$から$b_{2016}$までの$2016$個の整数のうち$3$の倍数であるものは全部で何個あるか.
(4)$y=f(x)$は$0 \leqq x \leqq 1$で定義された連続な関数で$f(0)=0$,$f(1)=1$であり,$0 \leqq x_1<x_2 \leqq 1$であるすべての$x_1,\ x_2$に対して$f(x_1)<f(x_2)$を満たしているとする.$x=g(y)$を$0 \leqq y \leqq 1$で定義された$f$の逆関数とする.
\[ 5 \int_0^1 f(x) \, dx=2 \int_0^1 g(y) \, dy \]
が成立しているとき$\displaystyle \int_0^1 f(x) \, dx$の値を求めよ.
早稲田大学 私立 早稲田大学 2016年 第4問
$f(x)$を
\[ f(x)=\int_0^x |t-2| \, dt \]
とする.ただし$x \geqq 0$とする.

関数$y=f(x)$のグラフと$x$軸,$x=1$,$x=4$で囲まれる部分の面積は$\displaystyle \frac{[ナ]}{[ニ]}$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.ただし設問$(2)$の空欄$[え]$には選択肢より適切な数を選んで記入しなさい.

(1)定員$2$名,$3$名,$4$名の$3$つの部屋がある.

(i) $2$人の教員と$7$人の学生の合計$9$人をこれらの$3$つの部屋に定員どおりに入れる割り当て方は$[あ]$とおりである.また,その割り当て方のなかで$2$人の教員が異なる部屋に入るようにする割り当て方は$[い]$とおりである.
(ii) $7$人の学生のみを,これらの$3$つの部屋に定員を超えないように入れる割り当て方は$[う]$とおりである.ただし誰も入らない部屋があってもよい.

(2)二元一次不定方程式$13x+11y=c$は$c=[え]$のとき$x>0$,$y>0$なる整数解をちょうど$1$組もつ.そのときの解は$(x,\ y)=([お],\ [か])$である.
\begin{waku}[$[え]$の選択肢]
$222 \quad 223 \quad 224$
\end{waku}
(3)すべての実数$m$に対して
\[ f(m)=\int_0^1 |e^x-m|e^x \, dx \]
により定義される関数$f(m)$は,$m=[き]$において最小値$[く]$をとる.
久留米大学 私立 久留米大学 2016年 第3問
次の計算をしなさい.対数は自然対数とする.
\[ \int_0^3 \frac{x^2}{\sqrt{1+x}} \, dx=[$7$],\qquad \int_1^{\sqrt{3}} 2x \log (1+x^2) \, dx=[$8$] \]
日本女子大学 私立 日本女子大学 2016年 第2問
$a,\ b$を実数とするとき,以下の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)定積分$\displaystyle I=\int_{-1}^1 {(e^x-a-bx)}^2 \, dx$を求めよ.

(2)$I$の最小値とそのときの$a,\ b$の値を求めよ.
東北学院大学 私立 東北学院大学 2016年 第4問
定積分
\[ I=\int_0^{\frac{\pi}{6}} \frac{\cos x}{\sqrt{3} \sin x+\cos x} \, dx,\quad J=\int_0^{\frac{\pi}{6}} \frac{\sin x}{\sqrt{3} \sin x+\cos x} \, dx \]
について以下の問いに答えよ.

(1)$I+\sqrt{3}J$の値を求めよ.
(2)$\sqrt{3}I-J$の値を求めよ.
(3)$I,\ J$の値を求めよ.
東北学院大学 私立 東北学院大学 2016年 第3問
関数$\displaystyle f(x)=x^2-6x+\int_0^x (t^2-6t+9) \, dt$の増減を調べ極値を求めよ.
スポンサーリンク

「定積分」とは・・・

 まだこのタグの説明は執筆されていません。