タグ「定積分」の検索結果

1ページ目:全871問中1問~10問を表示)
北海道大学 国立 北海道大学 2016年 第2問
$a>0$に対し,関数$f(x)$が
\[ f(x)=\int_{-a}^a \left\{ \frac{e^{-x}}{2a}+f(t) \sin t \right\} \, dt \]
をみたすとする.

(1)$f(x)$を求めよ.
(2)$0<a \leqq 2 \pi$において,
\[ g(a)=\int_{-a}^a f(t) \sin t \, dt \]
の最小値とそのときの$a$の値を求めよ.
北海道大学 国立 北海道大学 2016年 第2問
$f(x)=|x(x-2)|+|(x-1)(x-4)|+3x-10 (-2 \leqq x \leqq 4)$とおく.

(1)関数$y=f(x)$のグラフをかけ.グラフと$x$軸との$2$つの交点の$x$座標$\alpha$,$\beta (\alpha<\beta)$の値も求めよ.
(2)$(1)$の$\alpha,\ \beta$に対して,定積分$\displaystyle \int_{\alpha}^{\beta} f(x) \, dx$の値を求めよ.
三重大学 国立 三重大学 2016年 第4問
以下の問いに答えよ.

(1)$\displaystyle y=xe^{-\frac{1}{2}x^2} (-2 \leqq x \leqq 2)$の増減および極値を調べ,このグラフの概形をかけ.

(2)$\displaystyle \int_0^1 xe^{-\frac{1}{2}x^2} \, dx$を求めよ.
三重大学 国立 三重大学 2016年 第5問
$a$を正の実数とし,曲線$y=x^3$を$C_1$,曲線$\displaystyle y=\frac{9}{8}ax^2$を$C_2$とする.また,$C_1$と$C_2$の共通接線で$C_1$と$2$点を共有するものを$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)$C_1$と$\ell$が囲む図形の面積$S$を求めよ.
(3)$C_2$と$\ell$の接点の$x$座標$p$を求めよ.さらに$\displaystyle I=\int_0^p \left( \frac{9}{8}ax^2-x^3 \right) \, dx$とするとき,比$S:I$を最も簡単な整数比で表せ.
東北大学 国立 東北大学 2016年 第6問
関数
\[ f(x)=\int_0^\pi |\sin (t-x)-\sin 2t| \, dt \]
の区間$0 \leqq x \leqq \pi$における最大値と最小値を求めよ.
岐阜大学 国立 岐阜大学 2016年 第4問
$n$を正の整数とする.$\displaystyle S_n=\sum_{k=1}^n \frac{1}{k \cdot 2^k}$とおく.以下の問に答えよ.ただし,$\log$は自然対数を表す.

(1)$\displaystyle 1+x+x^2+\cdots +x^{n-1}=\frac{1}{1-x}-\frac{x^n}{1-x}$を数学的帰納法を用いて証明せよ.ただし,$x \neq 1$とする.

(2)$\displaystyle \int_0^{\frac{1}{2}} (1+x+x^2+\cdots +x^{n-1}) \, dx=\log 2-\int_0^{\frac{1}{2}} \frac{x^n}{1-x} \, dx$を示せ.

(3)$\displaystyle S_n=\log 2-\int_0^{\frac{1}{2}} \frac{x^n}{1-x} \, dx$を示せ.

(4)$\displaystyle 0 \leqq \int_0^{\frac{1}{2}} \frac{x^n}{1-x} \, dx \leqq \frac{1}{2^n} \log 2$を示せ.

(5)$\displaystyle \lim_{n \to \infty} S_n=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 2^2}+\frac{1}{3 \cdot 2^3}+\cdots$の値を求めよ.
富山大学 国立 富山大学 2016年 第1問
次の問いに答えよ.

(1)定積分$\displaystyle \int_0^{\frac{\sqrt{3}}{2}} \frac{x^2}{\sqrt{1-x^2}} \, dx$の値を求めよ.

(2)$3$以上の整数$n$に対して,不等式
\[ \int_0^{\frac{\sqrt{3}}{2}} \frac{x^2}{\sqrt{1-x^n}} \, dx<\frac{\pi}{6} \]
が成り立つことを示せ.
室蘭工業大学 国立 室蘭工業大学 2016年 第2問
関数$y=f(x)$のグラフが媒介変数$\theta$を用いて
\[ \left\{ \begin{array}{l}
x=\sin \theta-\theta \cos \theta \phantom{\frac{1}{[ ]}} \\
y=\cos \theta+\theta \sin \theta \phantom{\frac{1}{1}}
\end{array} \right. \quad (0 \leqq \theta \leqq \pi) \]
と表されている.

(1)関数$y=f(x)$の極値を求めよ.

(2)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \theta \sin 2\theta \, d\theta$および$\displaystyle \int_0^{\frac{\pi}{2}} \theta^2 \cos 2\theta \, d\theta$を計算せよ.

(3)関数$y=f(x)$のグラフと$x$軸,および$2$直線$x=0$と$x=1$で囲まれた図形の面積$S$を求めよ.
愛知教育大学 国立 愛知教育大学 2016年 第9問
次の問いに答えよ.

(1)不定積分$\displaystyle \int \sin^2 t \, dt$,$\displaystyle \int \sin t \cos t \, dt$,$\displaystyle \int \cos^2 t \, dt$をそれぞれ求めよ.
(2)等式
\[ f(x)=\cos x+\frac{1}{\pi} \int_0^\pi f(t) \cos (t-x) \, dt \]
を満たす$f(x)$を求めよ.
静岡大学 国立 静岡大学 2016年 第3問
次の各問に答えよ.

(1)関数$\displaystyle y=\frac{\log x}{x} (x>0)$の増減,凹凸を調べ,そのグラフの概形をかけ.ただし,$\log$は自然対数を表す.また,等式$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$は証明なしに用いてよい.

(2)$a$を正の実数とする.このとき,$a^x=x^a$を満たす正の実数$x$の個数を調べよ.

(3)定積分$\displaystyle \int_1^{\sqrt{e}} \frac{\log x}{x} \, dx$を求めよ.ただし,$e$は自然対数の底である.
スポンサーリンク

「定積分」とは・・・

 まだこのタグの説明は執筆されていません。