タグ「定数」の検索結果

99ページ目:全1257問中981問~990問を表示)
三重大学 国立 三重大学 2011年 第5問
関数$\displaystyle f(x)=\int_0^1 \bigl|t-|\,x\,| \bigr| \, dt$について以下の問いに答えよ.

(1)$y=f(x)$のグラフを描け.
(2)定数$k$に対し$f(x)=kx$を満たす$x$の個数を調べよ.
(3)$y=f(x)$のグラフと直線$\displaystyle y=-x+\frac{7}{2}$と$y$軸の3つで囲まれた図形の面積を求めよ.
名古屋工業大学 国立 名古屋工業大学 2011年 第1問
$k$を正の定数とする.関数
\begin{eqnarray}
& & f(x)=\frac{1}{x}-\frac{k}{(x+1)^2} \quad\,\, (x>0) \nonumber \\
& & g(x)=\frac{(x+1)^3}{x^2} \qquad\qquad (x>0) \nonumber
\end{eqnarray}
について,次の問いに答えよ.

(1)$g(x)$の増減を調べよ.
(2)$f(x)$が極値をもつような定数$k$の値の範囲を求めよ.
(3)$f(x)$が$x=a$で極値をとるとき,極値$f(a)$を$a$だけの式で表せ.
(4)$k$が(2)で求めた範囲にあるとき,$f(x)$の極大値は$\displaystyle \frac{1}{8}$より小さいことを示せ.
名古屋工業大学 国立 名古屋工業大学 2011年 第3問
$a$を定数とし,行列$A=\biggl( \begin{array}{cc}
a & 1 \\
1 & -a
\end{array} \biggr)$で表される1次変換を$f$とする.直線$\ell_1:x=-1$と円$C_1:(x-1)^2+(y-1)^2=1$を考える.$\ell_1$上の各点は$f$で直線$\ell_2$上に移り,$C_2$上の各点は$f$で2次曲線$C_2$上に移るとする.

(1)$\ell_2$の方程式を求めよ.
(2)$C_2$の方程式を求めよ.
(3)$C_1$と$C_2$の共有点がただ1点であるとき,$a$の値と共有点の座標を求めよ.
名古屋工業大学 国立 名古屋工業大学 2011年 第4問
$r$を正の定数とする.2つの曲線
\[ C_1:y=\frac{2x^2}{x^2+1},\quad C_2:y=\sqrt{r^2-x^2} \]
が共有点で互いに直交する接線を持つとする.

(1)共有点の座標と$r$の値を求めよ.
(2)$C_1$と$C_2$で囲まれる図形の面積$S$を求めよ.
佐賀大学 国立 佐賀大学 2011年 第1問
次の問いに答えよ.

(1)定数$a,\ b$を用いて,$\sin \theta+\cos \theta$を$a\sin (\theta+b)$の形に表せ.ただし,$a>0, 0 \leqq b < 2\pi$とする.
(2)$0 \leqq \theta \leqq \pi$の範囲で,$\sin \theta + \cos \theta$の最大値と最小値を求めよ.
(3)$t=\sin \theta + \cos \theta$とおくとき,$\sin \theta \cdot \cos \theta$を$t$を用いて表し,$0 \leqq \theta \leqq \pi$の範囲で,$\sin \theta \cdot \cos \theta$の最大値と最小値を求めよ.
(4)$t=\sin \theta + \cos \theta$とおくとき,$\sin^3 \theta + \cos^3 \theta$を$t$を用いて表し,$0 \leqq \theta \leqq \pi$の範囲で,$\sin^3 \theta + \cos^3 \theta$の最大値と最小値を求めよ.
佐賀大学 国立 佐賀大学 2011年 第3問
$xy$平面上の原点をOとし,放物線$y=k-x^2$を$C$とする.ただし,$k$は$\displaystyle \frac{1}{2}$より大きい定数とする.$C$上の点P$(t,\ k-t^2)$が$t \geqq 0$の範囲で動くときOPの長さが最小となるPをP$_0$とおく.

(1)P$_0$の座標を求めよ.
(2)OとP$_0$を通る直線と,P$_0$における$C$の接線が直交することを示せ.
(3)OとP$_0$を通る直線の傾きが1のとき,$k$の値を求めよ.
(4)OとP$_0$を通る直線の傾きが1のとき,$xy$平面の第1象限にあって,$x$軸,$y$軸および放物線$C$に接する円のうち小さい方の半径を求めよ.
鳥取大学 国立 鳥取大学 2011年 第4問
半径$a\;$cmの球$B$を,球の中心を通る鉛直軸に沿って毎秒$v\;$cmの速さで下の方向に動かし,水で一杯に満たされた容器Qに沈めていく.球$B$を沈め始めてから$t$秒後までにあふれ出る水の体積を$V\;$cm$^3$とするとき,次の問いに答えよ.ただし,$a,\ v$は正の定数で,容器$Q$に球$B$を完全に水没させることができるとする.

(1)$V$を$a,\ v,\ t$の式で表せ.また変化率$\displaystyle \frac{dV}{dt}$が最大になるのは,沈め始めてから何秒後か.
(2)容器$Q$は一辺の長さが$b$の正四面体から一面を取り除いた形をしており,開口した面は水平に保たれている.球$B$は完全に水面下に入った瞬間,水面と容器$Q$の3つの面に接するという.$b$を$a$で表せ.
琉球大学 国立 琉球大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{2}{\sqrt{3}-1}$の整数部分を$a$,小数部分を$b$とする.このとき,$a^2+ab+b^2$と$\displaystyle \frac{1}{a-b-1}-\frac{1}{a+b+1}$の値を求めよ.
(2)$3$次方程式$x^3+ax^2+bx-14=0$の$1$つの解が$2+\sqrt{3}i$であるとき,実数の定数$a,\ b$の値を求めよ.
(3)次の方程式を解け.
\[ \log_5(1-4 \cdot 5^x)=2x+1 \]
岐阜大学 国立 岐阜大学 2011年 第5問
放物線$y=x^2+4x$を$C$とする.$C$上の$x$座標が$p$である点における接線を$\ell$とする.ただし,$p$は正の定数とする.以下の問に答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$y$軸との交点を通る$C$の接線を$m$とする.ただし,$m$と$\ell$は異なるとする.$m$の方程式を求めよ.
(3)放物線$C$と接線$\ell$および$y$軸とで囲まれた部分の面積を$S$とし,放物線$C$と接線$m$および$y$軸とで囲まれた部分の面積を$T$とする.$\displaystyle \frac{T}{S}$の値は$p$によらず一定となることを示せ.
電気通信大学 国立 電気通信大学 2011年 第2問
$x>0$において関数
\[ f(x)=\sin (\log x) \]
を考える.\\
方程式$f(x)=0$の$0<x \leqq 1$における解を大きいほうから順にならべて,
\[ 1=\alpha_1>\alpha_2>\alpha_3>\cdots > \alpha_n>\alpha_{n+1} > \cdots \]
とする.以下の問いに答えよ.ただし,$\log x$は$e$を底とする自然対数とする.なお,不定積分の計算においては積分定数を省略してもよい.

(1)不定積分$I(x),\ J(x)$をそれぞれ
\[ I(x)=\int e^x \sin x \, dx,\quad J(x)=\int e^x \cos x \, dx \]
とおくとき,$I(x)+J(x),\ I(x)-J(x)$を求めよ.
(2)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(3)$\alpha_n \ (n=1,\ 2,\ 3,\ \cdots)$を求めよ.
(4)区間$\alpha_{n+1} \leqq x \leqq \alpha_n$において,曲線$y=f(x)$と$x$軸とで囲まれる部分の面積を$S_n \ (n=1,\ 2,\ 3,\ \cdots)$とする.$S_n$を求めよ.
(5)無限級数$\displaystyle \sum_{n=1}^\infty S_n$の和$S$を求めよ.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。