タグ「定数」の検索結果

98ページ目:全1257問中971問~980問を表示)
岩手大学 国立 岩手大学 2011年 第5問
2つの曲線
\[ C_1:y=2x^2,\quad C_2:y=-\frac{1}{4}x^2 \]
と2つの直線
\[ \ell_1:y=ax+t-1,\quad \ell_2:y=bx+t \]
があり,$\ell_1$は$C_1$に接し,$\ell_2$は$C_2$に接している.ただし,$a,\ b,\ t$は定数で,$a>0,\ b>0,\ 0<t<1$を満たすものとする.このとき,次の問いに答えよ.

(1)$a$および$b$をそれぞれ$t$で表せ.
(2)$C_1,\ \ell_1$および$y$軸で囲まれた図形の面積$S_1$と,$C_2,\ \ell_2$および$y$軸で囲まれた図形の面積$S_2$が等しくなるときの$t$の値を求めよ.
島根大学 国立 島根大学 2011年 第4問
次の問いに答えよ.

(1)関数$\displaystyle y=\frac{1}{\sqrt{x^2+1}}$の増減,極値,グラフの凹凸を調べ,そのグラフの概形をかけ.
(2)関数$y=\log (x+\sqrt{x^2+1})-ax$が極値をもつように,定数$a$の値の範囲を定めよ.
(3)極値$\displaystyle \lim_{n \to \infty} \left( \frac{1}{\sqrt{1^2+n^2}} +\frac{1}{\sqrt{2^2+n^2}}+\cdots+\frac{1}{\sqrt{n^2+n^2}}\right)$を求めよ.
島根大学 国立 島根大学 2011年 第4問
次の問いに答えよ.

(1)関数$\displaystyle y=\frac{1}{\sqrt{x^2+1}}$の増減,極値,グラフの凹凸を調べ,そのグラフの概形をかけ.
(2)関数$y=\log (x+\sqrt{x^2+1})-ax$が極値をもつように,定数$a$の値の範囲を定めよ.
(3)極値$\displaystyle \lim_{n \to \infty} \left( \frac{1}{\sqrt{1^2+n^2}} +\frac{1}{\sqrt{2^2+n^2}}+\cdots+\frac{1}{\sqrt{n^2+n^2}}\right)$を求めよ.
香川大学 国立 香川大学 2011年 第4問
$a,\ b,\ c$を定数とし,$a>0$とする.3次関数$f(x)=ax^3+bx^2+cx+1$の導関数を$f^{\, \prime}(x)$とする.相異なる実数$p,\ q$で定まる3つの数
\[ A=\frac{f^{\, \prime}(p)+f^{\, \prime}(q)}{2},\quad B=f^{\, \prime}\biggl(\frac{p+q}{2} \biggr),\quad C=\frac{f(p)-f(q)}{p-q} \]
について,次の問いに答えよ.

(1)$A$を$a,\ b,\ c,\ p,\ q$を用いて表せ.
(2)$A,\ B,\ C$の大小関係を調べよ.
香川大学 国立 香川大学 2011年 第4問
$a,\ b,\ c$を定数とし,$a>0$とする.3次関数$f(x)=ax^3+bx^2+cx+1$の導関数を$f^{\, \prime}(x)$とする.相異なる実数$p,\ q$で定まる3つの数
\[ A=\frac{f^{\, \prime}(p)+f^{\, \prime}(q)}{2},\quad B=f^{\, \prime}\biggl(\frac{p+q}{2} \biggr),\quad C=\frac{f(p)-f(q)}{p-q} \]
について,次の問いに答えよ.

(1)$A$を$a,\ b,\ c,\ p,\ q$を用いて表せ.
(2)$A,\ B,\ C$の大小関係を調べよ.
佐賀大学 国立 佐賀大学 2011年 第1問
次の問いに答えよ.

(1)定数$a,\ b$を用いて,$\sin \theta+\cos \theta$を$a\sin (\theta+b)$の形に表せ.ただし,$a>0, 0 \leqq b < 2\pi$とする.
(2)$0 \leqq \theta \leqq \pi$の範囲で,$\sin \theta + \cos \theta$の最大値と最小値を求めよ.
(3)$t=\sin \theta + \cos \theta$とおくとき,$\sin \theta \cdot \cos \theta$を$t$を用いて表し,$0 \leqq \theta \leqq \pi$の範囲で,$\sin \theta \cdot \cos \theta$の最大値と最小値を求めよ.
(4)$t=\sin \theta + \cos \theta$とおくとき,$\sin^3 \theta + \cos^3 \theta$を$t$を用いて表し,$0 \leqq \theta \leqq \pi$の範囲で,$\sin^3 \theta + \cos^3 \theta$の最大値と最小値を求めよ.
富山大学 国立 富山大学 2011年 第1問
次の問いに答えよ.

(1)すべての実数$x$について$x^2+k>|x|$が成立するような,定数$k$の範囲を求めよ.
(2)放物線$C_1:y=x^2+k$を考える.ただし,定数$k$は(1)の範囲にあるとする.直線$y=x$に関して$C_1$と対称な曲線を$C_2$とする.$C_1$上に点P$_1$を,$C_2$上に点P$_2$をとる.点P$_1$の$x$座標を$s$,点P$_2$の$y$座標を$t$とする.また原点をO$(0,\ 0)$とする.

(3)$\triangle$OP$_1$P$_2$の面積を$A$とおく.$A$を$s$と$t$を用いて表せ.ただし,3点O$(0,\ 0)$,L$(a,\ b)$,M$(c,\ d)$が同一直線上にないとき,その3点を頂点とする$\triangle$OLMの面積が$\displaystyle \frac{1}{2}|ad-bc|$であることは使ってよい.
(4)$t$を固定する.$s$が実数全体を動くときの$A$の最小値を$B$とする.$B$を$t$を用いて表せ.
(5)$t$が実数全体を動くときの$B$の最小値を求めよ.
滋賀大学 国立 滋賀大学 2011年 第4問
$a$を定数とする.空間内の4点A$(1,\ 0,\ 3)$,B$(0,\ 4,\ -2)$,C$(4,\ -3,\ 0)$,D$(-7+5a,\ 14-8a,\ z)$が同じ平面上にあるとき,次の問いに答えよ.

(1)$z$を$a$を用いて表せ.
(2)$a$の値を変化させたとき,点Dは直線AB上の点Pおよび直線AC上の点Qを通る.P,Qの座標を求めよ.
(3)$\triangle$ABCの面積を$S_1$,$\triangle$APQの面積を$S_2$とするとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
三重大学 国立 三重大学 2011年 第2問
$c$を定数として数列$\{a_n\}$を次の条件によって定める.
\[ a_1=c+1,\quad a_{n+1}=\frac{n}{n+1}a_n+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$a_2,\ a_3,\ a_4$を求めよ.また一般項$a_n$の形を推定し,その推定が正しいことを証明せよ.
(2)$c=324$のとき,$a_n$の値が自然数となるような$n$をすべて求めよ.
三重大学 国立 三重大学 2011年 第4問
関数$\displaystyle f(x)=\int_0^1 \bigl|t-|\,x\,| \bigr| \, dt$について以下の問いに答えよ.

(1)$y=f(x)$のグラフを描け.
(2)定数$k$に対し$f(x)=kx$を満たす$x$の個数を調べよ.
(3)$y=f(x)$のグラフと直線$\displaystyle y=-x+\frac{7}{2}$と$y$軸の3つで囲まれた図形の面積を求めよ.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。