タグ「定数」の検索結果

94ページ目:全1257問中931問~940問を表示)
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第2問
以下の問いに答えよ.

(1)$|x+y+1| \leqq 3$で定まる座標平面の領域を$D$とする.$D$を図示せよ.
(2)方程式$\displaystyle y= \left( -1+\frac{1}{a} \right)x$で与えられる直線$\ell$と,(1)で定めた領域$D$の共通部分として与えられる線分を考える.この線分の長さの最小値を求めよ.また,線分の長さが最小となるときの直線$\ell$は,どのような方程式で与えられるか.ただし,$a$は$0$でない定数とする.
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第5問
第$1$象限において,方程式$x^2+y^2=1$で与えられる図形を$C$で表す.方程式$\displaystyle \frac{x}{a}+\frac{y}{b}=1$で与えられる直線を$\ell$で表す.ただし,$a$と$b$は正の定数とする.以下の問いに答えよ.

(1)$b<1$のとき,図形$C$と直線$\ell$が共有点を持たないような$a$の範囲を求めよ.
(2)$b>1$のとき,図形$C$と直線$\ell$が共有点を持たないのは,$a$と$b$がどのような関係をみたすときか.
会津大学 公立 会津大学 2012年 第6問
$a,\ b$を実数の定数として,$2$次の正方行列$A$を
\[ A=\left( \begin{array}{cc}
a & a-b \\
0 & b
\end{array} \right) \]
と定める.自然数$n$に対して$A^n$を推測し,それが正しいことを数学的帰納法を用いて証明せよ.
兵庫県立大学 公立 兵庫県立大学 2012年 第2問
$k$を正の定数とする.放物線$y=kx^2$と直線$y=1$で囲まれた図形$D$を考える.この図形$D$を$x$軸のまわりに$1$回転した立体の体積を$V_1$,$y$軸のまわりに$1$回転してできる立体の体積を$V_2$とする.$V_1=V_2$となるような$k$の値を定めよ.
九州歯科大学 公立 九州歯科大学 2012年 第2問
$A,\ B,\ C$を$A>B>C>0$をみたす定数とする.$3$つの$2$次方程式
\[ Ax^2-2Bx+C=0,\quad -2Bx^2+Cx+A=0,\quad Cx^2+Ax-2B=0 \]
が共通の実数解$\gamma$をもつとき,次の問いに答えよ.

(1)$B$を$A$と$C$を用いて表せ.
(2)$Ax^2-2Bx+C=0$の$2$つの解を$\alpha_1,\ \beta_1$とする.$\alpha_1>\beta_1$とするとき,$\alpha_1$の値を求めよ.また,$\beta_1$を$A$と$C$を用いて表せ.
(3)$Cx^2+Ax-2B=0$の$2$つの解を$\alpha_2,\ \beta_2$とする.$\alpha_2>\beta_2$とするとき,$\alpha_2$の値を求めよ.また,$\beta_2$を$A$と$C$を用いて表せ.
(4)$-2Bx^2+Cx+A=0$の$\gamma$と異なる解$\theta$を$A$と$C$を用いて表せ.
九州歯科大学 公立 九州歯科大学 2012年 第3問
定数$a,\ b,\ c$に対して,$y=2x^{-a}$,$z=cx^{ab}$とおくとき,次の問いに答えよ.ただし,$1 \leqq x \leqq 2$,$a>0$,$c>0$とする.

(1)$z$を$y,\ b,\ c$を用いて表せ.
(2)$s=\log_2y$,$t=\log_2z$とおく.定数$A$と$B$を用いて$t=As+B$と表したとき,$A$を$b$を用いて表せ.また,$B$を$b$と$c$を用いて表せ.
(3)$A=-3$,$B=8$のとき,$b$と$c$の値を求めよ.
(4)$A=-3$,$B=8$とする.$\displaystyle w=\frac{y}{z}$の$1 \leqq x \leqq 2$における最小値が$\displaystyle \frac{1}{32}$となるとき,$a$の値を求めよ.
福岡女子大学 公立 福岡女子大学 2012年 第1問
$a$を定数とし,$f(x)=x^5-5x^3+ax$とする.方程式$f(x)=0$は異なる$5$つの実数解をもち,これらを$x_1<x_2<x_3<x_4<x_5$とする.この$5$つの解は等差数列をなしており,その総和は$0$である.次の問に答えなさい.

(1)$x_3=0$を示せ.
(2)$a$の値を求めよ.
(3)$x_1,\ x_2,\ x_4,\ x_5$を求めよ.
宮城大学 公立 宮城大学 2012年 第3問
次の空欄$[ハ]$から$[マ]$にあてはまる数や式を書きなさい.

$\mathrm{O}$を原点とする座標空間において,$3$点
\[ \mathrm{A} \left( \frac{1}{a},\ 0,\ 0 \right),\quad \mathrm{B} \left( 0,\ \frac{1}{b},\ 0 \right),\quad \mathrm{C} \left( 0,\ 0,\ \frac{1}{c} \right) \]
$(a,\ b,\ c>0)$をとる.平面$\mathrm{ABC}$上に点$\mathrm{H}$をとり,$\overrightarrow{\mathrm{AH}}=t \overrightarrow{\mathrm{AB}}+u \overrightarrow{\mathrm{AC}}$($t,\ u$は定数)とおく.このとき,
\[ \overrightarrow{\mathrm{OH}} \cdot \overrightarrow{\mathrm{AB}}=[ハ],\quad \overrightarrow{\mathrm{OH}} \cdot \overrightarrow{\mathrm{AC}}=[ヒ] \]
となる.
したがって,$\mathrm{OH}$が平面$\mathrm{ABC}$に垂直であるとすると,$\mathrm{H}$の座標は
\[ \left( [フ],\ [ヘ],\ [ホ] \right) \]
となる.また,このとき$\overrightarrow{\mathrm{AH}} \cdot \overrightarrow{\mathrm{BC}}=[マ]$となる.
富山県立大学 公立 富山県立大学 2012年 第1問
$m_1,\ m_2,\ p$は定数で$m_1<m_2$とする.放物線$C:y=x^2-x$が$2$つの直線$\ell_1:y=m_1x-1$,$\ell_2:y=m_2x-1$に接するとき,次の問いに答えよ.

(1)$m_1,\ m_2$の値を求めよ.
(2)$C$上の点$\mathrm{P}(p,\ p^2-p)$を通る$C$の接線$\ell$の方程式を$y=ax+b (m_1<a<m_2)$とする.$p$を用いて,定数$a,\ b$を表せ.
(3)$\ell$と$\ell_1$の共有点を$\mathrm{A}(x_1,\ y_1)$,$\ell$と$\ell_2$の共有点を$\mathrm{B}(x_2,\ y_2)$とする.線分$\mathrm{AB}$の長さが最小となるときの$p$の値を求めよ.
富山県立大学 公立 富山県立大学 2012年 第3問
$a$は定数で$a>1$とする.関数$\displaystyle f(x)=\frac{a}{1+(a-1)e^{-x}}$について,次の問いに答えよ.

(1)不等式$0<f(x)<a$が成り立つことを示せ.また,極限$\displaystyle \lim_{x \to -\infty}f(x)$および$\displaystyle \lim_{x \to \infty}f(x)$を求めよ.
(2)$a=3$のとき,$y=f(x)$のグラフの概形を,極値および変曲点を調べてかけ.
(3)$p$は定数で$p<0$とする.$a=3$のとき,定積分$\displaystyle I(p)=\int_p^0 f(x) \, dx$を求めよ.また,極限$\displaystyle \lim_{p \to -\infty}I(p)$を求めよ.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。