タグ「定数」の検索結果

91ページ目:全1257問中901問~910問を表示)
獨協大学 私立 獨協大学 2012年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)${(2x+3y)}^3+{(2x-3y)}^3$を展開すると$[$1$]$になる.
(2)$-1<a<0<b<c$とするとき,
\[ -\frac{a}{c},\ \frac{a}{c},\ \frac{1}{ac},\ -\frac{1}{ab},\ -\frac{1}{ac} \]
の$5$つの数のうち,小さい方から$2$番目の数は$[$2$]$であり$4$番目の数は$[$3$]$である.
(3)$\displaystyle \frac{\pi}{2} \leqq \theta<\frac{3\pi}{2}$のときに
\[ 2 \sin^3 \theta-\sin \theta=0 \]
の解をすべて記すと$[$4$]$である.
(4)$a,\ b$を定数とする$x$に関する$3$次方程式
\[ 2x^3+ax^2+bx-10=0 \]
の$2$つの解が$x=1,\ 2$であるとき,$a=[$5$]$,$b=[$6$]$であり,もう$1$つの解は$[$7$]$である.
(5)$\mathrm{P}$,$\mathrm{E}$,$\mathrm{N}$,$\mathrm{C}$,$\mathrm{I}$,$\mathrm{L}$の文字が$1$つずつ刻まれているタイルが$6$枚ある.これらを横$1$列に並べるとき,$\mathrm{P}$が$\mathrm{E}$より左で,かつ,$\mathrm{N}$が$\mathrm{E}$より右となる確率は$[$8$]$である.
(6)$a$を定数とする方程式$x^3-6x^2-a=0$の異なる実数解は,$a$の値が$[$9$]$の場合には$3$個,$[$10$]$または$[$11$]$の場合には$2$個,$[$12$]$または$[$13$]$の場合には$1$個,それぞれ存在する.
(7)$\alpha$を実数として,空間における原点$\mathrm{O}$と$2$点$\mathrm{A}(-1,\ \alpha,\ \alpha)$,$\mathrm{B}(1,\ 2,\ \alpha)$を考える.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を最小にする$\alpha$の値は$[$14$]$であり,このとき,三角形$\mathrm{OAB}$の面積は$[$15$]$である.
(8)点$\mathrm{O}$を中心とする半径$1$の円の円周上に点$\mathrm{A}$をとり,点$\mathrm{A}$における接線上に$\mathrm{AB}=2$となる点$\mathrm{B}$をとる.次に,点$\mathrm{B}$から$\mathrm{BC}=2$となるように円周上に点$\mathrm{A}$とは異なる点$\mathrm{C}$をとる.このとき,三角形$\mathrm{OAC}$の面積は$[$16$]$であり,$\sin \angle \mathrm{CAB}=[$17$]$である.
(図は省略)
近畿大学 私立 近畿大学 2012年 第3問
$p$を実数の定数として,実数$x$の関数を$\displaystyle f(x)={25}^x+\frac{1}{{25}^x}+2p \left( 5^x+\frac{1}{5^x}-1 \right)+7$とする.$\displaystyle t=5^x+\frac{1}{5^x}$とおき,$f(x)$を$t$で表した関数を$g(t)$とおく.

(1)関数$g(t)$を求めよ.
(2)方程式$g(t)=0$が実数解を$1$個もつとき,$p$の値と解$t$の値を求めよ.
(3)方程式$g(t)=0$が次の条件をみたす$2$個の実数解$t_1,\ t_2$をもつとき,$p$がとりうる値の範囲をそれぞれ求めよ.
\[ (ⅰ) t_1<2,\ t_2>2 \quad (ⅱ) t_1=2,\ t_2>2 \quad (ⅲ) 2<t_1<t_2 \quad \tokeishi t_1<t_2<2 \]
(4)$t$を定数とみなし$\displaystyle t=5^x+\frac{1}{5^x}$を$x$の方程式とみなして,方程式$\displaystyle t=5^x+\frac{1}{5^x}$が異なる$2$つの実数解$x$をもつように$t$の値を定めるとき,$t$がとりうる値の範囲を求めよ.
(5)方程式$f(x)=0$の異なる実数解$x$の個数を,$p$の値で場合分けして求めよ.
中央大学 私立 中央大学 2012年 第1問
次の問題文の空欄にもっとも適する答えを解答群から選び,その記号をマークせよ.ただし,同じ記号を$2$度以上用いてもよい.

$a,\ b,\ r,\ k$は$a>b>0$,$r>0$,$k>0$を満たす定数とする.
座標平面の相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が円$X^2+Y^2=r^2$の上を動くとき,$\triangle \mathrm{ABC}$の面積$S_1$の最大値は次のようにして求められる.まず,$2$点$\mathrm{B}$,$\mathrm{C}$を固定して点$\mathrm{A}$を動かすとき,その三角形の高さに注意すれば,面積が最大となるのは,$\mathrm{AB}=\mathrm{AC}$であるような二等辺三角形のときである.したがって,この円に内接する二等辺三角形のうちで面積が最大のものを見つければよい.そこで,$\mathrm{A}(0,\ r)$,$\mathrm{B}(-r \cos \theta,\ r \sin \theta)$,$\mathrm{C}(r \cos \theta,\ r \sin \theta)$ $\displaystyle \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$とすれば$S_1$の最大値は$\sin \theta=[ア]$のとき$S_1=[イ] r^2$であることがわかる.
点$\mathrm{P}(x,\ y)$の$y$座標を$k$倍した点を$\mathrm{P}^\prime(x,\ ky)$とおく.相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標を$\mathrm{A}(x_1,\ y_1)$,$\mathrm{B}(x_2,\ y_2)$,$\mathrm{C}(x_3,\ y_3)$としたとき,$\triangle \mathrm{ABC}$の面積$S$は内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を用いて計算すると$[ウ]$と表される.したがって,点$\mathrm{A}^\prime(x_1,\ ky_1)$,$\mathrm{B}^\prime(x_2,\ ky_2)$,$\mathrm{C}^\prime(x_3,\ ky_3)$のなす三角形の面積を$S_2$とおくと,$S_2$は$S$の$[エ]$倍である.
点$\mathrm{P}(x,\ y)$は楕円$\displaystyle E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$の上を動く点とする.$\displaystyle k=\frac{a}{b}$であるとき,点$\mathrm{P}^\prime(x,\ ky)$は原点を中心とする半径$[オ]$の円上を動く.したがって,相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が楕円$E$上を動くとき,$\triangle \mathrm{ABC}$の面積の最大値は$a,\ b$を用いて$[カ]$と表される.

\begin{itemize}
ア,イの解答群
\[ \begin{array}{lllll}
\marua -\displaystyle\frac{1}{2} \phantom{AAA} & \marub -\displaystyle\frac{1}{3} \phantom{AAA} & \maruc \displaystyle\frac{1}{3} & \marud \displaystyle\frac{1}{2} \phantom{AAA} & \marue \displaystyle\frac{16}{9} \\ \\
\maruf -\displaystyle\frac{\sqrt{3}}{2} & \marug -\displaystyle\frac{\sqrt{3}}{3} & \maruh \displaystyle\frac{\sqrt{3}}{4} & \marui \displaystyle\frac{\sqrt{3}}{2} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \\ \\
\maruk \displaystyle\frac{8 \sqrt{2}}{9} & \marul \displaystyle\frac{2+\sqrt{3}}{4} & \marum \displaystyle\frac{\sqrt{2}(1+\sqrt{3})}{3} & &
\end{array} \]
ウの解答群

\mon[$\marua$] $\displaystyle |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$

\mon[$\marub$] $\displaystyle\frac{1}{2} |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$

\mon[$\maruc$] $\displaystyle |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$

\mon[$\marud$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$

\mon[$\marue$] $\displaystyle |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$

\mon[$\maruf$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$

\mon[$\marug$] $\displaystyle \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\}$

\mon[$\maruh$] $\displaystyle\frac{1}{2} \biggl[ \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\} \biggr]$

エの解答群
\[ \marua \frac{1}{k^3} \quad \marub \frac{1}{k^2} \quad \maruc \frac{1}{k} \quad \marud \frac{2}{k} \quad \marue \frac{k}{2} \quad \maruf k \quad \marug k^2 \quad \maruh k^3 \]
オの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{a}{2} \phantom{AAA} & \marub \displaystyle\frac{a^2}{4} \phantom{AAA} & \maruc a \phantom{AAA} & \marud a^2 \phantom{AAA} & \marue ab \\
\maruf \displaystyle\frac{b}{2} & \marug \displaystyle\frac{b^2}{4} & \maruh b & \marui b^2 & \maruj (ab)^2 \phantom{\frac{{[ ]}^2}{2}}
\end{array} \]
カの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{\sqrt{3}}{2}ab \phantom{AA} & \marub \displaystyle\frac{8 \sqrt{2}}{9} ab \phantom{AA} & \maruc \displaystyle\frac{\sqrt{3}}{4} ab \phantom{AA} & \marud \displaystyle\frac{16}{9}ab \phantom{AA} & \marue \displaystyle\frac{3 \sqrt{3}}{4} ab \\ \\
\maruf \displaystyle\frac{\sqrt{3}}{2} \frac{a^3}{b} & \marug \displaystyle\frac{8 \sqrt{2}}{9} \frac{a^3}{b} & \maruh \displaystyle\frac{\sqrt{3}}{4} \frac{a^3}{b} & \marui \displaystyle\frac{16}{9} \frac{a^3}{b} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \frac{a^3}{b}
\end{array} \]
\end{itemize}
中央大学 私立 中央大学 2012年 第2問
次の問題文の空欄にもっとも適する答えを解答群から選び,その記号をマークせよ.ただし,同じ記号を$2$度以上用いてもよい.

$a$を$1$より大きい実数とする.$xy$平面において,$x$軸,$y$軸,直線$x=1$と曲線$y=a^x$で囲まれる部分の面積を近似的に計算したい.$n$を自然数とし,$k=1,\ 2,\ \cdots,\ n$とする.また,$f(x)$は$0 \leqq x \leqq 1$において$f(x)>0$を満たす連続関数とする.

(1)$4$点$\displaystyle \left( \frac{k-1}{n},\ 0 \right)$,$\displaystyle \left( \frac{k}{n},\ 0 \right)$,$\displaystyle \left( \frac{k}{n},\ f \left( \frac{k}{n} \right) \right)$,$\displaystyle \left( \frac{k-1}{n},\ f \left( \frac{k-1}{n} \right) \right)$を頂点にもつ台形の面積を$M_k$とする.このとき$M_k=[キ]$となる.とくに$f(x)=a^x$であれば,面積の和$S_n=M_1+M_2+\cdots +M_n$は$[ク]$となる.ここで,極限$\displaystyle \lim_{x \to 0} \frac{a^x-1}{x}=[ケ]$を用いると,$\displaystyle \lim_{n \to \infty} S_n=[コ]$と計算される.
(2)以下では,曲線$y=f(x)$は下に凸とする.
$3$点$\displaystyle \left( \frac{k-1}{n},\ f \left( \frac{k-1}{n} \right) \right)$,$\displaystyle \left( \frac{2k-1}{2n},\ f \left( \frac{2k-1}{2n} \right) \right)$,$\displaystyle \left( \frac{k}{n},\ f \left( \frac{k}{n} \right) \right)$を通る放物線を
\[ C_k:y=\alpha \left( x-\frac{2k-1}{2n} \right)^2+\beta \left( x-\frac{2k-1}{2n} \right)+\gamma \quad (\alpha,\ \beta,\ \gamma \text{は定数}) \]
とおく.$x$軸,直線$\displaystyle x=\frac{k-1}{n}$,直線$\displaystyle x=\frac{k}{n}$と放物線$C_k$で囲まれる部分の面積を$N_k$とおくとき,$N_k=[サ]$となる.とくに$f(x)=a^x$であれば,面積の和$N_1+N_2+\cdots N_n$は$[シ]$となる.
\begin{itemize}
ケ,コの解答群
\[ \begin{array}{lllll}
\marua e^a \phantom{AA} & \marub e^{-a} \phantom{AA} & \maruc \displaystyle\frac{e^a}{a-1} \phantom{AA} & \marud (a-1)e^a \phantom{AA} & \marue (a-1)e^{-a} \\ \\
\maruf \log a & \marug \displaystyle\frac{1}{\log a} & \maruh \displaystyle\frac{\log a}{a-1} & \marui \displaystyle\frac{a-1}{\log a} & \maruj (a-1) \log a
\end{array} \]
キ,サの解答群

\mon[$\marua$] $\displaystyle \frac{1}{n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marub$] $\displaystyle \frac{1}{2n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\maruc$] $\displaystyle \frac{1}{3n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marud$] $\displaystyle \frac{1}{4n} \left\{ f \left( \frac{k-1}{n} \right)+2f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marue$] $\displaystyle \frac{1}{5n} \left\{ f \left( \frac{k-1}{n} \right)+3f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\maruf$] $\displaystyle \frac{1}{6n} \left\{ f \left( \frac{k-1}{n} \right)+4f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

ク,シの解答群
\[ \begin{array}{ll}
\marua \displaystyle\frac{(a^n-1) \sqrt{a}}{n(a-1)} \phantom{AA} & \marub \displaystyle\frac{a^{\frac{1}{2n}}(a-1)}{n(a^{\frac{1}{n}}-1)} \\ \\
\maruc \displaystyle\frac{(a+1)(a^n-1)}{n(a-1)} \phantom{AA} & \marud \displaystyle\frac{(a^{\frac{1}{n}}+1)(a-1)}{n(a^\frac{1}{n}-1)} \\ \\
\marue \displaystyle\frac{(a+1)(a^n-1)}{2n(a-1)} & \maruf \displaystyle\frac{(a^{\frac{1}{n}}+1)(a-1)}{2n(a^{\frac{1}{n}}-1)} \\ \\
\marug \displaystyle\frac{(a^{\frac{1}{n}}+a^{\frac{1}{2n}}+1)(a-1)}{n(a^\frac{1}{n}-1)} & \maruh \displaystyle\frac{(a^{\frac{1}{n}}+a^{\frac{1}{2n}}+1)(a-1)}{3n(a^\frac{1}{n}-1)} \\ \\
\marui \displaystyle\frac{(a^{\frac{1}{n}}+2a^{\frac{1}{2n}}+1)(a-1)}{4n(a^\frac{1}{n}-1)} & \maruj \displaystyle\frac{(a+3 \sqrt{a}+1)(a^n-1)}{5n(a-1)} \\ \\
\maruk \displaystyle\frac{(a^{\frac{1}{n}}+4a^{\frac{1}{2n}}+1)(a-1)}{6n(a^\frac{1}{n}-1)} &
\end{array} \]
\end{itemize}
吉備国際大学 私立 吉備国際大学 2012年 第1問
次の( \quad )を埋めよ.

(1)$x^4-3x^2y^2+y^4$を因数分解すると$( ① )$となる.
(2)$1$個のサイコロを$5$回投げるとき,素数の目がちょうど$4$回出る確率は$( ② )$である.
(3)$x$の$2$次方程式$(a-3)x^2+2(a+3)x+a+5=0$が実数解をもつとき,定数$a$の値の範囲は$( ③ )$である.
(4)$360$の正の約数の個数は$( ④ )$,その総和は$( ⑤ )$.
北海道科学大学 私立 北海道科学大学 2012年 第5問
$x$の$2$次方程式$x^2-2ax-a+6=0$が異なる$2$つの正の解をもつとき,定数$a$の値の範囲は$[$1$]<a<[$2$]$である.
北海道科学大学 私立 北海道科学大学 2012年 第11問
$x$の$2$次関数$y=ax^2+4ax+b (a>0)$について次の各問に答えよ.

(1)この関数のグラフの頂点の座標を$a,\ b$を用いて表せ.
(2)この関数の値が$-3 \leqq x \leqq 2$において,最大になるときと最小になるときの$x$の値をそれぞれ求めよ.
(3)$-3 \leqq x \leqq 2$におけるこの関数の最大値が$3$,最小値が$-5$であるとき,定数$a,\ b$の値を求めよ.
(4)$(3)$のとき,この$2$次関数のグラフの$x$軸および$y$軸との共有点を求めて,グラフを描け.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2012年 第1問
空間内に,同じ平面上にない$4$つの点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.$\triangle \mathrm{OAB}$,$\triangle \mathrm{OAC}$の重心をそれぞれ$\mathrm{G}$,$\mathrm{G}^\prime$とし,線分$\mathrm{OC}$を$2:3$に内分する点を$\mathrm{P}$,線分$\mathrm{AB}$を$t:(1-t)$に内分する点を$\mathrm{Q}$とする.ただし,$t$は$0<t<1$なる定数である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおく.以下の$[$1$]$から$[$10$]$に答えなさい.

このとき,$\overrightarrow{\mathrm{OQ}}=[$1$] \overrightarrow{a}+[$2$] \overrightarrow{b}+[$3$] \overrightarrow{c}$,$\overrightarrow{\mathrm{OG}}=[$4$] \overrightarrow{a}+[$5$] \overrightarrow{b}+[$6$] \overrightarrow{c}$である.また線分$\mathrm{GG}^\prime$と線分$\mathrm{PQ}$が交わるとき$t=[$7$]$であり,線分$\mathrm{GG}^\prime$と線分$\mathrm{PQ}$の交点$\mathrm{R}$は線分$\mathrm{PQ}$を$[$8$]:[$9$]$に内分する.さらに,$\displaystyle \overrightarrow{a} \cdot \overrightarrow{c}=\frac{2}{5}$,$\displaystyle \overrightarrow{b} \cdot \overrightarrow{c}=\frac{4}{15}$で,線分$\mathrm{PQ}$と線分$\mathrm{OP}$が直交するならば,$|\overrightarrow{c}|=[$10$]$である.
なお,この空間の任意のベクトル$\overrightarrow{m}$は,実数$u,\ v,\ w$を用いて,
\[ \overrightarrow{m}=u \overrightarrow{a}+v \overrightarrow{b}+w \overrightarrow{c} \]
の形に表すことができ,しかも,表し方はただ$1$通りである.
九州産業大学 私立 九州産業大学 2012年 第3問
$a,\ b$を定数とする.$2$次関数$f(x)=x^2+ax+b$に対して,$1$次関数$g(x)$が$f(x)=(x-2)g(x)$を満たしており,$g(2)=3$である.放物線$y=f(x)$上の点$(2,\ f(2))$における接線を$\ell$とする.このとき

(1)定数$a,\ b$の値は$a=[アイ]$,$b=[ウエ]$である.
(2)直線$\ell$の方程式は$y=[オ]x-[カ]$である.
(3)直線$\ell$,直線$y=g(x)$および$x$軸で囲まれた図形の面積は$\displaystyle \frac{[キク]}{[ケ]}$である.

(4)放物線$y=f(x)$と直線$y=g(x)$で囲まれた図形の面積は$\displaystyle \frac{[コサ]}{[シ]}$である.
東京理科大学 私立 東京理科大学 2012年 第2問
記号$(0,\ \infty)$は,正の実数全体からなる区間を表すものとする.$1$より大きい実数$r$と,区間$(0,\ \infty)$で連続な関数$f(x)$に対する,定積分
\[ \int_1^{r^2} f \left( x^3+\frac{r^6}{x^3} \right) \frac{1}{x} \, dx \quad \text{と} \quad \int_1^{r^3} f \left( x+\frac{r^6}{x} \right) \frac{1}{x} \, dx \]
について考える.

(1)$r$を$1$より大きい実数とする.

(i) 定積分$\displaystyle \int_1^{r^2} \left( x^3+\frac{r^6}{x^3} \right) \frac{1}{x} \, dx$と$\displaystyle \int_1^{r^3} \left( x+\frac{r^6}{x} \right) \frac{1}{x} \, dx$を求めよ.
(ii) 定積分$\displaystyle \int_1^{r^2} \left( x^3+\frac{r^6}{x^3} \right)^2 \frac{1}{x} \, dx$と$\displaystyle \int_1^{r^3} \left( x+\frac{r^6}{x} \right)^2 \frac{1}{x} \, dx$を求めよ.

(2)次の問いに答えよ.

(i) $1$より大きいすべての実数$r$と区間$(0,\ \infty)$で連続なすべての関数$f(x)$に対して等式
\[ \int_1^{r^2} f \left( x^3+\frac{r^6}{x^3} \right) \frac{1}{x} \, dx=a \int_1^{r^6} f \left( t+\frac{r^6}{t} \right) \frac{1}{t} \, dt \]
が成立するような,定数$a$の値を求めよ.
(ii) $1$より大きいすべての実数$r$と区間$(0,\ \infty)$で連続なすべての関数$f(x)$に対して等式
\[ \int_1^{r^3} f \left( x^3+\frac{r^6}{x} \right) \frac{1}{x} \, dx=b \int_{r^3}^{r^6} f \left( t+\frac{r^6}{t} \right) \frac{1}{t} \, dt \]
が成立するような,定数$b$の値を求めよ.
(iii) $1$より大きいすべての実数$r$と区間$(0,\ \infty)$で連続なすべての関数$f(x)$に対して等式
\[ \int_1^{r^2} f \left( x^3+\frac{r^6}{x^3} \right) \frac{1}{x} \, dx=c \int_{1}^{r^3} f \left( x+\frac{r^6}{x} \right) \frac{1}{x} \, dx \]
が成立するような,定数$c$の値を求めよ.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。