タグ「定数」の検索結果

90ページ目:全1257問中891問~900問を表示)
法政大学 私立 法政大学 2012年 第4問
$0 \leqq \theta<2\pi$とする.

(1)$\sin \theta-\sqrt{3} \cos \theta \geqq -1$を満たす$\theta$の値の範囲を求めよ.
(2)$(1)$で求めた範囲の$\theta$について,$4 \cos^3 \theta+3 \sqrt{3} \cos^2 \theta$の最大値と最小値を求めよ.また,そのときの$\theta$の値を求めよ.
(3)$k$は実数の定数とする.$4 \cos^3 \theta+3 \sqrt{3} \cos^2 \theta=k$かつ$\sin \theta-\sqrt{3} \cos \theta \geqq -1$を満たす$\theta$が,ちょうど$3$個存在するような,$k$の値の範囲を求めよ.
法政大学 私立 法政大学 2012年 第4問
次の問題は,生命科学部生命機能学科植物医科学専修を志望する受験生のみ解答せよ.
$t$を正の定数とする.曲線$y=x^3-x$を$C$,$C$上の点$\mathrm{P}(t,\ t^3-t)$における接線を$\ell$とする.$\ell$の方程式は
\[ y=\left( [ア] t^2-[イ] \right) x-[ウ] t^3 \]
である.
$C$と$\ell$の,$\mathrm{P}$以外の共有点を$\mathrm{Q}$とすると,$\mathrm{Q}$の$x$座標は$[エオ] t$である.
$\mathrm{Q}$における$C$の接線を$m$とすると,$m$の方程式は
\[ y=\left( [カキ] t^2-[イ] \right)x+[クケ] t^3 \]
である.
$C$と$m$の,$\mathrm{Q}$以外の共有点を$\mathrm{R}$とすると,$\mathrm{R}$の$x$座標は$[コ] t$であり,
\[ \overrightarrow{\mathrm{QP}} \cdot \overrightarrow{\mathrm{QR}}=18 \left( [サシ] t^6-[スセ] t^4+[ソ] t^2 \right) \]
となる.ここで,
\[ f(t)=\frac{\overrightarrow{\mathrm{QP}} \cdot \overrightarrow{\mathrm{QR}}}{18t^6} \]
とおくと,$\displaystyle t=\frac{[タ] \sqrt{[チツ]}}{[チツ]}$のとき,$f(t)$は最小値$\displaystyle \frac{[テト]}{[ナ]}$をとる.
藤田保健衛生大学 私立 藤田保健衛生大学 2012年 第2問
糸の長さ$L$,おもりの質量$m$の振り子の振れの角(水平面に垂直な直線と糸がなす角)の大きさを$\theta$とすると,$\theta$は時刻$t$の関数として
\[ mL \frac{d^2 \theta}{dt^2}=-mg \theta \cdots\cdots (*) \]
を満たす.ただし重力加速度$g$は一定とする.

(1)$\theta=a \cos (2 \pi \nu t+\delta)$(ただし$\nu,\ a,\ \delta$は定数で$\nu>0$,$a \neq 0$)が時刻$t=t_1$で極大値をとり,その後初めて極小値をとる時刻を$t=t_2$とするとき,$t_2-t_1=[$4$]$である.
(2)$(1)$の$\theta$が$(*)$を満たすとき,$\nu$を求めると$\nu=[$5$]$である.
(3)$(2)$の$\theta$に対して時刻$t$におけるこの振り子のエネルギー$E(t)$を
\[ E(t)=\frac{1}{2} mL^2 \left( \frac{d\theta}{dt} \right)^2+\frac{1}{2}mgL \theta^2 \]
で与えるものとする.このとき$\displaystyle \frac{dE(t)}{dt}=[$6$]$である.
関西学院大学 私立 関西学院大学 2012年 第4問
$a$を定数とし,$\displaystyle f(x)=\frac{\cos 2x-(a+2) \cos x+a+1}{\sin x}$とするとき,次の問いに答えよ.

(1)極限$\displaystyle \lim_{x \to 0} \frac{\cos x-1}{x^2}$を求めよ.

(2)等式$\displaystyle \lim_{x \to 0} \frac{f(x)}{x}=\frac{1}{2}$が成り立つように定数$a$の値を求めよ.

(3)上の$(2)$で求めた$a$の値に対して定積分$\displaystyle \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{f(x)} \, dx$を求めよ.
産業医科大学 私立 産業医科大学 2012年 第3問
自然数$n$と$0$以上の整数$m$に対して,$\displaystyle p_n=\comb{2n}{n} {\left( \frac{1}{2} \right)}^{2n}$,$\displaystyle I_m=\int_0^{\frac{\pi}{2}} \sin^m x \, dx$とおく.次の問いに答えなさい.

(1)すべての自然数$n$について$\displaystyle \left( n+\frac{1}{2} \right) {p_n}^2=\frac{bI_{2n}}{I_{2n+1}}$が成り立つように,定数$b$の値を求めなさい.
(2)$\displaystyle 0<x<\frac{\pi}{2}$のとき,$\sin^m x>\sin^{m+1} x>0$であることを用いて,極限$\displaystyle \lim_{n \to \infty} \sqrt{n} p_n$を求めなさい.
千葉工業大学 私立 千葉工業大学 2012年 第1問
次の各問に答えよ.

(1)$\displaystyle \frac{3 \sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}=[ア]+\sqrt{[イウ]}$である.
(2)整式$x^3-4x^2+7x+1$を$x^2-3x+2$で割った余りは$[エ]x+[オ]$である.
(3)$\displaystyle 3^{2x} \leqq \frac{9}{{27}^x}$をみたす$x$の範囲は$\displaystyle x \leqq \frac{[カ]}{[キ]}$である.
(4)直線$2x+3y+5=0$と点$(-4,\ 1)$において垂直に交わる直線の方程式は$\displaystyle y=\frac{[ク]}{[ケ]}x+[コ]$である.
(5)円$x^2+y^2=9$と円$x^2+(y+a)^2=9$が共有点をもつような定数$a$の値の範囲は$[サシ] \leqq a \leqq [ス]$である.
(6)$\overrightarrow{a}=(k,\ -2k,\ 5)$が$\overrightarrow{b}=(1,\ -2,\ -2)$に垂直であるとき,$k=[セ]$であり,$|\overrightarrow{a}|=[ソ] \sqrt{[タ]}$である.
(7)$1$個のサイコロを振り,出た目を$4$で割った余りを$X$とする.$X=1$となる確率は$\displaystyle \frac{[チ]}{[ツ]}$であり,また,$X$の期待値は$\displaystyle \frac{[テ]}{[ト]}$である.
(8)関数$\displaystyle f(x)=\frac{1}{3}x^3-ax^2+3x+1$($a$は定数)が$x=3$で極値をとるとき,$a=[ナ]$であり,極大値は$\displaystyle \frac{[ニ]}{[ヌ]}$である.
京都女子大学 私立 京都女子大学 2012年 第1問
次の各問に答えよ.

(1)$A=2x^2-xy-3y^2+3x+8y-5$を因数分解せよ.また,$\displaystyle x=\frac{\sqrt{7}-2}{2},\ y=\frac{1}{\sqrt{7}-2}$のとき,$A$の値を求めよ.
(2)方程式$\displaystyle |-\abs{x|+4}=\frac{1}{2}x+1$の解を求めよ.
(3)$2$次関数$f(x)=ax^2+2ax+a+b$($a,\ b$は定数)が区間$-2 \leqq x \leqq 2$において最大値$4$,最小値$1$をとるように$a,\ b$の値を定めよ.
大阪産業大学 私立 大阪産業大学 2012年 第2問
直線$\ell:y=-3x+k$が,点$\mathrm{P}(1,\ 6)$および点$\mathrm{Q}$の$2$点で円$O:x^2+{(y-4)}^2=5$と交わり,点$\mathrm{Q}$で曲線$\displaystyle C:y=\frac{a}{x}+b$と接している.ここで$k,\ a,\ b$は定数とする.以下の各問いに答えよ.

(1)$k$の値を求めよ.
(2)点$\mathrm{Q}$の座標を求めよ.
(3)$a$と$b$の値を求めよ.
(4)直線$\ell$と曲線$C$,および直線$x=1$で囲まれた部分の面積$S$を求めよ.
大阪学院大学 私立 大阪学院大学 2012年 第2問
$\mathrm{O}$を原点とし,$y>0$であるような点$\mathrm{A}(x,\ y)$から$x$軸に下ろした垂線の足を$\mathrm{B}(x,\ 0)$とする.いま,点$\mathrm{A}$を,$\mathrm{OA}+\mathrm{AB}=c$($c$は正定数)という条件を満たすように選びたい.次の問いに答えなさい.

(1)点$\mathrm{A}$の座標$(x,\ y)$の満たすべき条件を$y=f(x)$の形の式で表しなさい.また,そのとき点$\mathrm{A}$の$x$座標のとりうる範囲も示しなさい.
(2)$c=2$とするとき,点$\mathrm{A}$の条件を満たす座標$(x,\ y)$のうち,$-1 \leqq x \leqq 1$の範囲での$x+y$の最大値と最小値を求めなさい.
大阪薬科大学 私立 大阪薬科大学 2012年 第1問
次の問いに答えなさい.

(1)自然数$m,\ n$に対し,命題「$m^2+n^2$が偶数ならば,$m+n$は偶数である」が真ならば「真」と,偽ならば反例を$[$\mathrm{A]$}$に記入しなさい.
(2)$2^x=5^y=100$のとき,$\displaystyle \frac{1}{x}+\frac{1}{y}=[$\mathrm{B]$}$となる.
(3)$xy$座標平面において,円$x^2+y^2=3$と直線$x+y=1$の$2$つの交点を結ぶ線分の長さは,$[$\mathrm{C]$}$である.
(4)数直線上を動く点$\mathrm{P}$が原点$\mathrm{O}$にある.表と裏が等しい確率で出るコインを投げ,表が出ると正方向に$1$だけ進み,裏が出ると負方向に$1$だけ進むことを繰り返す.コインを$10$回投げるとき,$\mathrm{P}$の座標が$-6$となる確率は,$[$\mathrm{D]$}$である.
(5)方程式$x^3-3x^2-9x-a=0$が異なる$3$つの実数解を持つとき,定数$a$が満たさなければならない条件を$[あ]$で求めなさい.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。