タグ「定数」の検索結果

85ページ目:全1257問中841問~850問を表示)
南山大学 私立 南山大学 2012年 第2問
$a,\ b$を正の定数とし,関数$f(x)=2x^3-3ax^2$と座標平面上の$2$つの曲線$C_1:y=f(x)$,$C_2:y=f(x)+b$を考える.

(1)$f(x)$の極大値と極小値を求めよ.
(2)区間$0 \leqq x \leqq 5$における$f(x)$の最小値を$a$で表せ.
(3)$a=1,\ b=5$として,同一平面上に$C_1$と$C_2$を図示せよ.
(4)$1$つの直線が$C_1$,$C_2$の両方の接線であるとき,その直線を$C_1$,$C_2$の共通接線という.$a=1$のとき,$C_1$と$C_2$に,傾き$12$の共通接線があるように$b$の値を定めよ.
龍谷大学 私立 龍谷大学 2012年 第2問
つぎの問いに答えなさい.

(1)$3$次方程式$x^3-6x+5=0$を解きなさい.
(2)$3$次方程式$x^3-6x+k=0$が$3$つの相異なる実数解を持つための定数$k$の値の範囲を求めなさい.
学習院大学 私立 学習院大学 2012年 第3問
$p$を定数として,関数$f(x)$を
\[ f(x)=e^x-\left( 1+\frac{1}{2}x \right) (1+px) \]
と定める.

(1)$p=0$のとき,$x \geqq 0$ならば$f(x) \geqq 0$であることを示せ.
(2)「$x \geqq 0$ならば$f(x) \geqq 0$」が成り立つような定数$p$の取り得る値の範囲を求めよ.
学習院大学 私立 学習院大学 2012年 第3問
等式
\[ \frac{1}{x^3-x}=\frac{a}{x-1}+\frac{b}{x}+\frac{c}{x+1} \]
が恒等式となるように定数$a,\ b,\ c$の値を定めよ.また,それを利用して
\[ \sum_{n=2}^{100} \frac{1}{n^3-n} \]
を求めよ.
上智大学 私立 上智大学 2012年 第4問
$\log x$は自然対数,$e$は自然対数の底を表す.

(1)$a,\ b$は$e^{-1}<a<1,\ b>0$を満たす実数とする.曲線$C:y=\log x$と直線$\ell:y=ax+b$とが接しているとすると,
\[ b=[モ] \log a+[ヤ] \]
が成り立つ.このとき,曲線$C$と$3$つの直線$\ell$,$x=1$,$x=e$とで囲まれた図形の面積を$S(a)$とする.$a$が$e^{-1}<a<1$の範囲を動くときの$S(a)$の最小値は
\[ \left( [ユ]e+[ヨ] \right) \log \left( \frac{e+[ラ]}{[リ]} \right) +[ル] \]
で与えられる.
(2)$k$を正の定数とし,$e^{-k}<t<1$である$t$に対して,
\[ f(t)=\int_0^k |e^{-x|-t} \, dx \]
とおく.$t$が$e^{-k}<t<1$の範囲を動くときの関数$f(t)$の最小値を$M(k)$とおくと,
\[ M(k)=\left( [レ]+e^P \right)^2,\quad \text{ただし} P=\frac{[ロ]}{[ワ]}k \]
となる.このとき
\[ \lim_{k \to +0} \frac{M(k)}{k^2}=\frac{[ヲ]}{[ン]} \]
である.
中央大学 私立 中央大学 2012年 第1問
次の各問いに答えよ.

(1)次の$3$次式を$1$次式の積に因数分解せよ.
\[ x^3-2x^2-5x+6 \]
(2)$x$についての$2$次方程式
\[ x^2-2kx+3k-2=0 \]
が,相異なる$2$つの実数解を持つような,定数$k$の値の範囲を求めよ.
(3)$x$の変域が$-1 \leqq x \leqq 2$であるときの$2$次関数
\[ y=2x^2-3x+1 \]
の最大値と最小値を求めよ.
(4)$5$個の数字$1,\ 2,\ 3,\ 4,\ 5$を一回ずつ使って$4$桁の数を作る.このとき$3215$以上の数はいくつあるか求めよ.
(5)$2^{1000}$は何桁の数になるか.ただし,$\log_{10}2=0.30103$とする.
(6)図のような三角形$\mathrm{ABC}$において,$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}=5:6:4$である.このとき$\sin A:\sin B:\sin C$を整数比で表せ.

(図は省略)
中央大学 私立 中央大学 2012年 第2問
座標平面上に円$(x+4)^2+y^2=16$と点$\mathrm{P}(4,\ 0)$がある.このとき,以下の問いに答えよ.

(1)点$\mathrm{P}$を通る直線$y=mx+n$が円と$2$個の共有点を持つように定数$m$の値の範囲を定めよ.
(2)円周上を動く点$\mathrm{Q}$がある.線分$\mathrm{PQ}$を$3:2$に内分する点の軌跡を求めよ.
中央大学 私立 中央大学 2012年 第3問
$f(x)=x^2+x+1$とおく.曲線$y=f(x)$に原点から引いた接線の方程式を$y=mx$,$y=m^\prime x (m<m^\prime)$とおく.また,それぞれの接点の$x$座標を$c,\ c^\prime$とおく.このとき,$c<0<c^\prime$である.実数$a$に対して連立不等式
\[ y \leqq f(x),\quad y \geqq mx,\quad y \geqq m^\prime x,\quad a \leqq x \leqq a+1 \]
の表す領域の面積を$S(a)$で表す.このとき,次の問に答えよ.

(1)定数$m,\ m^\prime,\ c,\ c^\prime$を求めよ.
(2)$0<a \leqq c^\prime$のとき,$S(a)$を求めよ.
(3)$c \leqq a \leqq 0$のとき,$S(a)$を求めよ.
(4)$c \leqq a \leqq c^\prime$のとき,$S(a)$の最大値と最小値を求めよ.
中央大学 私立 中央大学 2012年 第4問
$\displaystyle f(x)=\sin \left( \log \frac{1}{x} \right) (0<x \leqq 1)$とおく.$f(x)=0$となるすべての$x$を,大きい順に$a_0,\ a_1,\ a_2,\ \cdots$とする.以下の問いに答えよ.

(1)$a_n (n=0,\ 1,\ 2,\ \cdots)$を求めよ.
(2)正の定数$a,\ b$に対し
\[ \frac{d}{dx} (Ae^{-ax} \cos bx+Be^{-ax} \sin bx)=e^{-ax} \cos bx \]
を満たす定数$A,\ B$を求め,不定積分
\[ \int e^{-ax} \cos bx \, dx \]
を求めよ.
(3)$\displaystyle b_n=\int_{a_{n+1}}^{a_n} \{f(x)\}^2 \, dx (n=0,\ 1,\ 2,\ \cdots)$を,$\displaystyle t=\log \frac{1}{x}$とおくことにより求めよ.
(4)$(3)$で得られた数列$\{b_n\}$に対し,無限級数$\displaystyle \sum_{n=0}^\infty b_n$の和を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

(1)$\displaystyle 0 \leqq \alpha<\beta \leqq \frac{\pi}{2}$かつ$R>0$とする.極座標$(r,\ \theta)$に関する条件
\[ 0 \leqq r \leqq R,\quad \alpha \leqq \theta \leqq \beta \]
により定まる図形を$x$軸のまわりに回転させて得られる立体の体積を$T$とする.$T$を$\alpha,\ \beta,\ R$を用いた式で表すと
\[ T=[あ] \]
である.
(2)極方程式$r=f(\theta) (0 \leqq \theta \leqq \alpha)$で表される曲線$C$と,$\theta=\alpha$で表される直線$\ell$および$x$軸の正の部分で囲まれた図形を$S$とする.ただし$\displaystyle 0<\alpha<\frac{\pi}{2}$とし,関数$f(\theta)$は連続かつ$f(\theta)>0$をみたし,$0 \leqq \theta \leqq \alpha$において増加または減少または定数とする.
$S$を$x$軸のまわりに回転させて得られる立体の体積を$V(\alpha)$とすると
\[ \frac{d}{d\alpha}V(\alpha)=[い] \]
であり,したがって
\[ V(\alpha)=[う] \]
である.また$S$を直線$\ell$のまわりに回転させて得られる立体の体積を$W(\alpha)$とすると
\[ W(\alpha)=[え] \]
である.
(3)$(2)$において$f(\theta)=\sqrt[3]{\cos \theta}$とするとき$\displaystyle V \left( \frac{\pi}{4} \right)$,$\displaystyle W \left( \frac{\pi}{4} \right)$の値を求めると
\[ V \left( \frac{\pi}{4} \right)=[お],\quad W \left( \frac{\pi}{4} \right)=[か] \]
である.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。