タグ「定数」の検索結果

71ページ目:全1257問中701問~710問を表示)
日本獣医生命科学大学 私立 日本獣医生命科学大学 2013年 第5問
放物線$C_1:y=x^2+a$($a$は正の定数)上の点$\mathrm{P}$における接線と放物線$C_2:y=x^2$とで囲まれる図形の面積$S$は$\mathrm{P}$が$C_1$上をどのように動いても常に一定か.一定ならば$S$を$a$を用いて表せ.
愛知学院大学 私立 愛知学院大学 2013年 第2問
$3$次方程式$x^3+(2m-7)x^2+(9-m)x-m-3=0$が,異なる$3$つの正の解をもつとき,定数$m$の値の範囲を求めなさい.
県立広島大学 公立 県立広島大学 2013年 第3問
実数$a,\ b,\ \alpha$を定数とし,$\displaystyle 0<\alpha<\frac{\pi}{2}$とする.このとき,
\[ \overrightarrow{d_n}=(\cos n \alpha,\ \sin n \alpha) \quad (n=0,\ 1,\ 2,\ 3,\ \cdots) \]
を座標平面上のベクトルとする.ベクトル$\overrightarrow{p_n}$を,
\[ \overrightarrow{p_1}=\overrightarrow{d_1},\quad \overrightarrow{p_{n+1}}=a \overrightarrow{p_n}+b \overrightarrow{d_{n-1}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.$\overrightarrow{p_2}=\overrightarrow{d_2}$のとき次の問いに答えよ.

(1)$a,\ b$を求めよ.
(2)すべての自然数$n$に対し,$\overrightarrow{p_n}=\overrightarrow{d_n}$となることを示せ.
首都大学東京 公立 首都大学東京 2013年 第1問
関数$f(x)=|x^2-3x|-x$について,以下の問いに答えなさい.

(1)関数$y=f(x)$のグラフをかきなさい.
(2)直線$\ell:y=-x+k$と$y=f(x)$のグラフがちょうど$3$点を共有するとき,定数$k$の値を求めなさい.
(3)(2)で求めた$k$の値に対する直線$\ell$と$y=f(x)$のグラフで囲まれた図形の面積を求めなさい.
首都大学東京 公立 首都大学東京 2013年 第4問
$a$は$0$でない定数とし,$b$と$c$を定数とする.$k$がすべての実数を動くとき,$xy$平面上の直線$\ell:y=kx+k^2+3k+1$はつねに放物線$C:y=ax^2+bx+c$に接するものとする.このとき,以下の問いに答えなさい.

(1)$a,\ b,\ c$の値を求めなさい.
(2)直線$\ell$と放物線$C$の接点を$\mathrm{P}$とするとき,原点$\mathrm{O}$と点$\mathrm{P}$を結ぶ線分$\mathrm{OP}$の中点$\mathrm{Q}(s,\ t)$の軌跡の方程式を求めなさい.
広島市立大学 公立 広島市立大学 2013年 第2問
$p,\ q$を実数の定数とする.$2$次関数$f(x)=x^2+px+q$について,以下の問いに答えよ.

(1)$f(a)=a$を満たす実数$a$が存在するための$p,\ q$についての必要十分条件を求めよ.
(2)$f(a)=b,\ f(b)=a$を満たす異なる実数$a,\ b$が存在することと,$p,\ q$が不等式$(p-1)^2-4(q+1)>0$を満たすことは同値であることを証明せよ.
大阪市立大学 公立 大阪市立大学 2013年 第1問
放物線$C_1:y=2x^2$と放物線$C_2:y=(x-a)^2+b$を考える.ただし,$a,\ b$は定数で,$a>0$とする.放物線$C_1$と$C_2$がともにある点$\mathrm{P}$を通り,点$\mathrm{P}$において共通の接線$\ell$をもつとする.また,点$\mathrm{P}$で$\ell$と直交する直線を$m$とし,$m$と放物線$C_1$,$C_2$との$\mathrm{P}$以外の交点を,それぞれ$\mathrm{Q}$,$\mathrm{R}$とする.次の問いに答えよ.

(1)$b$を$a$を用いて表せ.
(2)直線$m$の方程式,および,点$\mathrm{Q}$,点$\mathrm{R}$の$x$座標を$a$を用いて表せ.
(3)$\displaystyle a=\frac{1}{4}$のとき,放物線$C_1$と直線$m$で囲まれた部分の面積$S$を求めよ.
滋賀県立大学 公立 滋賀県立大学 2013年 第1問
定数$a_1<a_2<a_3< \cdots$に対して,連続関数$f_n(x) (n=1,\ 2,\ \cdots)$が$f_1(x)=|x-a_1|$,$f_{n+1}(x)=f_n(x)+|x-a_{n+1|}$によって定義されている.

(1)$a_1=1,\ a_2=2$のとき,$f_2(x)$の最小値を求めよ.
(2)$a_1=1,\ a_2=2,\ a_3=3$のとき,$f_3(x)$の最小値を求めよ.
(3)$n$が$2$以上の自然数であるとき,$f_n(x)$の最小値を求めよ.
滋賀県立大学 公立 滋賀県立大学 2013年 第4問
$a$を正の定数とする.曲線$y=|e^{-ax|\sin ax} (x \geqq 0)$において,極大となる点を$x$座標の小さい方から順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$とする.$\mathrm{P}_n (n=1,\ 2,\ \cdots)$を通り,$y$軸に平行な直線が$x$軸と交わる点を$\mathrm{Q}_n$とする.$\mathrm{P}_n$,$\mathrm{Q}_n$および原点を頂点とする三角形の面積を$S_n$とする.

(1)$\mathrm{P}_n$の座標を$a,\ n$を用いて表せ.
(2)$S_n$を$a,\ n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty}\frac{S_n}{S_{n+1}}$の値を求めよ.
大阪市立大学 公立 大阪市立大学 2013年 第3問
$a>1$を満たす定数$a$に対し,座標が$(a,\ a)$である点を$\mathrm{A}$とする.関数$\displaystyle y=\frac{1}{x} (x>0)$のグラフ上を動く点$\displaystyle \mathrm{P} \left( t,\ \frac{1}{t} \right)$をとり,$t>0$で定義された関数$f(t)$を,長さ$\mathrm{AP}$を用いて$f(t)=\mathrm{AP}^2$で定める.次の問いに答えよ.

(1)$f(t)$を$t$と$a$を用いて表せ.
(2)$f^\prime(t)=0$となる$t (t>0)$の値を求めよ.
(3)$\mathrm{AP}$が最小になるような点$\mathrm{P}$の座標と,$\mathrm{AP}$の最小値を求めよ.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。