タグ「定数」の検索結果

70ページ目:全1257問中691問~700問を表示)
青山学院大学 私立 青山学院大学 2013年 第4問
$a$を正の定数とし,関数 \makebox{$y=a \cos x$} \ $\displaystyle \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$のグラフを$C_1$,関数 \makebox{$y=\sin x$} \ $\displaystyle \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$のグラフを$C_2$とする.

(1)$C_1$と$C_2$の交点の$x$座標を$\theta$とするとき,$\sin \theta$と$\cos \theta$を$a$を用いて表せ.
(2)$C_1$と$x$軸,$y$軸で囲まれた図形が,$C_2$によって面積の等しい$2$つの部分に分かれるとする.このとき,$a$の値を求めよ.
青山学院大学 私立 青山学院大学 2013年 第5問
次の問に答えよ.

(1)不定積分$\displaystyle \int te^t \, dt$を求めよ.
(2)$0 \leqq a \leqq 1$を満たす定数$a$について,定積分$\displaystyle S=\int_0^1 |t-a|e^t \, dt$を$a$を用いて表せ.
(3)$a$が$0 \leqq a \leqq 1$の範囲を動くとき,$S$を最小とするような$a$の値を求めよ.
早稲田大学 私立 早稲田大学 2013年 第1問
次の問に答えよ.

(1)数列$\{a_n\}$を初項$2$,公比$2$の等比数列,数列$\{b_n\}$を初項$2$,公差$2$の等差数列とし,$c_n=a_nb_n$とする.

(i) $a_{10}=[ア]$である.
(ii) $b_n=a_{10}$のとき,$n=[イ]$である.
(iii) 数列$\{c_n\}$の初項から第$n$項までの和を$S_n$とすると,
\[ S_n=4 \left\{ 2^n([ウ])+1 \right\} \]
である.

(2)$x$についての$3$次方程式
\[ x^3+(a-3)x^2+(-2a+b+3)x+a-b-15=0 \]
の$1$つの解が$3+\sqrt{3}i$であるとき,実数の定数$a,\ b$の値は$a=[エ]$,$b=[オ]$で,$3+\sqrt{3}i$以外の解は,$[カ]$と$[キ]$である.
早稲田大学 私立 早稲田大学 2013年 第1問
次の$[ ]$にあてはまる数または数式を記入せよ.

(1)$a,\ b$は定数で,$x$についての整式$x^3+ax+b$は${(x+1)}^2$で割り切れるとする.このとき,$a=[ ]$,$b=[ ]$である.
(2)$5$個の自然数の組$(a_1,\ a_2,\ a_3,\ a_4,\ a_5)$で,
\[ a_1=1,\quad a_n+1 \leqq a_{n+1} \leqq a_n+2 \quad (n=1,\ 2,\ 3,\ 4) \]
を満たすものは全部で$[ ]$組ある.
(3)$3$次関数$f(x)$は$x=1$と$x=2$で極値をとり,曲線$y=f(x)$と曲線$\displaystyle y=\frac{3x}{2 \sqrt{x^2+1}}+1$は点$(0,\ 1)$において共通の接線を持つとする.このとき,$f(x)=[ ]$である.
(4)ある花の$1$個の球根が$1$年後に$3$個,$2$個,$1$個,$0$個(消滅)になる確率はそれぞれ$\displaystyle \frac{3}{10}$,$\displaystyle \frac{2}{5}$,$\displaystyle \frac{1}{5}$,$\displaystyle \frac{1}{10}$であるとする.$1$個の球根が$2$年後に$2$個になっている確率は$[ ]$である.
早稲田大学 私立 早稲田大学 2013年 第2問
複素数$z=1+2 \sqrt{6} \, i$と自然数$n=1,\ 2,\ 3,\ \cdots$について,複素数$z^n$を実数$a_n,\ b_n$を用いて
\[ z^n=a_n+b_n i \]
と表す.次の問に答えよ.

(1)${a_n}^2+{b_n}^2=5^{2n} (n=1,\ 2,\ 3,\ \cdots)$であることを示せ.
(2)すべての$n$について$a_{n+2}=pa_{n+1}+qa_n$が成り立つ定数$p,\ q$を求めよ.
(3)どんな$n$についても$a_n$は$5$の整数倍でないことを示せ.
(4)$z^n (n=1,\ 2,\ 3,\ \cdots)$は実数でないことを示せ.
早稲田大学 私立 早稲田大学 2013年 第3問
$\displaystyle f(x)=\frac{1}{2}e^{2x}+2e^x+x$とする.次の問に答えよ.

(1)実数$t$に対して$g(x)=tx-f(x)$とおく.$x$が実数全体を動くとき,$g(x)$が最大値をもつような$t$の範囲を求めよ.また$t$がその範囲にあるとき,$g(x)$の最大値とそのときの$x$の値を求めよ.
(2)$(1)$で求めた最大値を$m(t)$とする.$a$を定数とし,$t$の関数$h(t)=at-m(t)$を考える.$t$が$(1)$で求めた範囲を動くとき,$h(t)$の最大値を求めよ.
早稲田大学 私立 早稲田大学 2013年 第3問
$a,\ b$を正の定数とする.

(1)$\displaystyle \int_0^{2\pi} |a \sin x+b \cos x| \, dx$を求めよ.
(2)$\displaystyle \lim_{n \to \infty} \sum_{k=n+1}^{2n} \int_{\frac{2(k-1) \pi}{n}}^{\frac{2k \pi}{n}} \left( \log \frac{k}{n} \right) |a \sin nx+b \cos nx| \, dx$を求めよ.
早稲田大学 私立 早稲田大学 2013年 第5問
平面上の点$\mathrm{P}(\cos \theta,\ \sin \theta)$に対して,点$\mathrm{Q}(x,\ y)$を以下のように定める.
\[ \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{cc}
0 & 2 \\
\sqrt{3} & -1
\end{array} \right) \left( \begin{array}{c}
\cos \theta \\
\sin \theta
\end{array} \right) \]
$\theta$が$0 \leqq \theta \leqq 2\pi$の範囲を動くとき,次の問に答えよ.

(1)すべての点$\mathrm{Q}(x,\ y)$に対して,$ax^2+bxy+y^2$の値が$\theta$によらず一定であるとき,定数$a,\ b$の値は$a=[ヒ]$,$b=[フ]$である.
(2)原点$\mathrm{O}$と点$\mathrm{Q}$の距離の$2$乗の最小値は$[ヘ]$,最大値は$[ホ]$である.
東京医科大学 私立 東京医科大学 2013年 第2問
次の$[ ]$を埋めよ.

(1)座標平面上の放物線$C:y=a(x-b)^2$($a,\ b$は正の定数)が点$\displaystyle \mathrm{A} \left( \frac{4}{5},\ \frac{3}{5} \right)$を通り,点$\mathrm{A}$における$C$の法線が原点$\mathrm{O}(0,\ 0)$を通るとき,$\displaystyle a=\frac{[アイ]}{[ウエ]}$,$\displaystyle b=\frac{[オカ]}{[キク]}$である.
(2)不等式
\[ \log (n+9)-\log (n+8)<\frac{1}{100} \]
をみたす最小の正の整数$n$の値は$n=[ケコ]$である.ただし,対数は自然対数とする.
東京医科大学 私立 東京医科大学 2013年 第3問
座標平面上の楕円$\displaystyle C:\frac{(x-a)^2}{b}+\frac{(y-c)^2}{2}=1$($a,\ b,\ c$は正の定数)は$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(0,\ 2)$を通るとする.

(1)定数$a,\ b,\ c$は$a=[ア]$,$b=[イ]$,$c=[ウ]$である.
(2)点$\mathrm{P}$が楕円$C$上を動くとき,内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AP}}$の最大値を$M$とすれば$\displaystyle M=\frac{[エオ]}{[カ]}$である.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。