タグ「定数」の検索結果

67ページ目:全1257問中661問~670問を表示)
東京薬科大学 私立 東京薬科大学 2013年 第5問
$a$は実数の定数で,$0<a \leqq 1$とする.$2$次関数$f(x)=x^2-ax+b$が
\[ \int_0^1 f(x) \, dx=0 \]
を満たすとき,次の各問に答えよ.

(1)$a$と$b$の関係式を求めると,$\displaystyle b=\frac{[$*$け]}{[こ]}a+\frac{[$*$さ]}{[し]}$となる.
(2)実数$k$が$\displaystyle \int_1^2 f(x) \, dx=k \int_{-1}^0 f(x) \, dx$を満たすとき,$k$の最小値は$[$*$す]$である.$k$が最小であるとき,$y=f(x)$の接線で傾きが$1$のものは$\displaystyle y=x+\frac{[$*$せ]}{[そ]}$である.
(3)$f(x)$の$0 \leqq x \leqq 1$における最大値と最小値を$a$の式で表したものをそれぞれ$M(a)$,$m(a)$と記すと,
\[ M(a)=\frac{[$*$た]}{[ち]} a+\frac{[$*$つ]}{[て]},\quad m(a)=\frac{[$*$と]}{[な]} a^2+\frac{[$*$に]}{[ぬ]}a+\frac{[$*$ね]}{[の]} \]
となる.
(4)最大値と最小値の差$M(a)-m(a)$の最小値は$\displaystyle \frac{[は]}{[ひ]}$である.
京都女子大学 私立 京都女子大学 2013年 第2問
次の問に答えよ.

(1)不等式$\displaystyle |x|<\frac{x+4}{3}$を解け.
(2)$a$を定数とする.$x$についての$2$次不等式$x^2-(a+3)x-(2a^2-3a-2)<0$を解け.
(3)$(2)$の不等式の解が$(1)$の不等式の解に含まれるように,$a$の値の範囲を求めよ.
同志社大学 私立 同志社大学 2013年 第2問
$3$次関数$\displaystyle f(x)=-\frac{1}{2}x^3+\frac{3}{2}x$について次の問いに答えよ.

(1)$y=f(x)$のグラフの概形を描け.
(2)$|x| \leqq 2$における関数$y=f(x)$の最大値$M$,および最小値$m$を求めよ.
(3)定数$k$が$m \leqq k \leqq M$をみたすとき,直線$y=k$と曲線$y=f(x)$の共有点の個数を調べよ.
(4)定数$K$が$m \leqq K \leqq M$をみたすとき,$\sin^3 \theta+\cos^3 \theta=K$をみたす$\theta$の個数を調べよ.ただし,$\displaystyle -\frac{3}{4} \pi \leqq \theta \leqq \frac{1}{4} \pi$とする.
同志社大学 私立 同志社大学 2013年 第3問
定数$a (a>1)$に対して曲線$y=a^x$,$x$軸および$y$軸,直線$x=1$で囲まれた図形を$S$とし,曲線$y=a^{2x}$,曲線$y=a^x$および直線$x=1$で囲まれた図形を$D$とする.次の問いに答えよ.

(1)$S$を$x$軸のまわりに回転させてできる回転体の体積$V(a)$を求めよ.
(2)$D$を$x$軸のまわりに回転させてできる回転体の体積$W(a)$を求めよ.
(3)$V(a)=W(a)$となる$a$の値を求めよ.
(4)極限値$\displaystyle \lim_{a \to 1+0} \frac{W(a)}{a-1}$を求めよ.
京都薬科大学 私立 京都薬科大学 2013年 第1問
次の$[ ]$にあてはまる数を記入せよ.

(1)直線$(1-k)x+(1+k)y-k-3=0$は定数$k$の値によらず定点$\mathrm{A}$を通る.このとき,定点$\mathrm{A}$の座標は,$([ ],\ [ ])$である.また,中心が点$\mathrm{A}$で,直線$x+y=5$に接する円の半径は$[ ]$となる.
(2)空間の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 2,\ -3)$,$\mathrm{B}(1,\ -1,\ 1)$において,線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{C}$の座標は,$([ ],\ [ ],\ [ ])$である.また,このとき,$\cos \angle \mathrm{AOC}=[ ]$となる.
(3)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\mathrm{CA}=6$とする.また,$\angle \mathrm{BAC}$の$2$等分線と辺$\mathrm{BC}$の交点を$\mathrm{P}$とする.このとき,$\triangle \mathrm{ABC}$の面積は$[ ]$となり,$\mathrm{BP}=[ ]$,$\mathrm{AP}=[ ]$となる.$\triangle \mathrm{ABC}$の内接円の半径を$r$とすると,$r=[ ]$である.
(4)$4$つの数
$\log_2 (\log_4 (\log_8 16))$,$\log_4 (\log_8 (\log_2 16))$,$\log_8 (\log_2 (\log_4 16))$,$\log_2 (\log_8 (\log_4 16))$の大小を比較すると,$[ ]<[ ]<[ ]<[ ]$となる.
同志社大学 私立 同志社大学 2013年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$a,\ b$を定数とする.座標平面において,$x^2+y^2+ax+by=0$は中心を点$([ ],\ [ ])$とする半径$[ ]$の円の方程式である.サイコロを$2$度投げ,最初に出た目を$a$とし,次に出た目を$b$とする.この円の内部の面積が$4 \pi$以下である確率は$[ ]$である.また,この円が直線$x+y=a-b$と異なる$2$点で交わる確率は$[ ]$である.
(2)$2013$を素因数分解すると$[ ]$である.$x=[ ]$,$y=0$は,方程式$11x+25y=2013$をみたす.$x,\ y$を共に$0$以上の整数とするとき,方程式$11x+25y=2013$をみたす$(x,\ y)$の組は全部で$[ ]$組あり,それらの中で$x^2+y^2$の値が最大になるのは$x=[ ]$,$y=[ ]$のときである.
同志社大学 私立 同志社大学 2013年 第4問
$k$は定数とし,媒介変数$t$を用いて$x=2 \sin^3 t$,$\displaystyle y=k \cos^3 t \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$と表される曲線$S$を考える.次の問いに答えよ.

(1)$\displaystyle \frac{dy}{dx}$を$k,\ t$を用いて表せ.ただし$\displaystyle 0<t<\frac{\pi}{2}$とする.
(2)曲線$S$が直線$x+y=1$に第$1$象限で接しているとき,接点の座標を$(p,\ q)$とする.$p,\ q,\ k$の値を求めよ.また,そのときの$t$の値$t_0$を求めよ.
(3)$(2)$で定まる$t_0$に対し,$\displaystyle \int_0^{t_0} \cos^4 t \, dt$,$\displaystyle \int_0^{t_0} \cos^6 t \, dt$の値をそれぞれ求めよ.
(4)$(2)$で定まる$p,\ q,\ k,\ t_0$に対し,$0 \leqq x \leqq p$で曲線$S$,直線$x+y=1$と$y$軸で囲まれる図形の面積を求めよ.
安田女子大学 私立 安田女子大学 2013年 第3問
次の問いに答えよ.

(1)放物線$y=x^2+ax+b$が$2$点$(-2,\ 23)$,$(3,\ -2)$を通るとき,定数$a,\ b$の値を求めよ.
(2)$(1)$の放物線と直線$y=-x+3$の$2$つの交点の座標を求めよ.
(3)$(2)$の$2$つの交点の$x$座標をそれぞれ$m,\ n$とする.ただし,$m<n$とする.放物線$y=x^2-6x-k^2+4k+5$が$m \leqq x \leqq n$の区間において,常に$y<0$の部分にあるような定数$k$の値の範囲を求めよ.
安田女子大学 私立 安田女子大学 2013年 第4問
$1$から$6$の目が等確率で出るサイコロを投げ,出た目の数が偶数のとき定数$a_1$の値を$1$,奇数のとき$-1$と決める.定数$b_1,\ c_1,\ a_2,\ b_2,\ c_2$の値についてもそれぞれ同じ方法で$1$または$-1$に決める.このとき,次の問いに答えよ.

(1)$1$次関数$y=a_1x+b_1$と$y=a_2x+b_2$が$xy$平面上で共有点をもつ確率を求めよ.
(2)$1$次関数$y=a_1x+b_1$と$y=a_2x+b_2$が$xy$平面上で共有点をもたないとき,$2$次関数$y=a_1(x-b_1)^2+c_1$と$y=a_2(x-b_2)^2+c_2$が$xy$平面上で共有点をもつ確率を求めよ.
(3)$2$次関数$y=a_1(x-b_1)^2+c_1$と$y=a_2(x-b_2)^2+c_2$が$xy$平面上で共有点をもつ確率を求めよ.
大阪歯科大学 私立 大阪歯科大学 2013年 第2問
$2$次関数$y=2x^2-4ax+a^2+a$の$0 \leqq x \leqq 3$における最小値が$0$となるような定数$a$の値をすべて求めよ.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。