タグ「定数」の検索結果

62ページ目:全1257問中611問~620問を表示)
東京海洋大学 国立 東京海洋大学 2013年 第3問
座標平面上の曲線$K$を$y=x^3-x+1$とする.

(1)点$(t,\ t^3-t+1)$における$K$の接線の方程式を$t$を用いて表せ.
(2)点$(1,\ 5)$を通る直線$\ell$が$K$と接するとき,接点の座標を求めよ.
(3)直線$\ell$と$K$で囲まれた図形の面積を求めよ.ただし,$\displaystyle \int x^3 \, dx=\frac{x^4}{4}+C$($C$は積分定数)を用いてよい.
愛媛大学 国立 愛媛大学 2013年 第2問
次の問いに答えよ.

(1)$i$を虚数単位とする.等式$(1+i)^{14}=a+bi$を満たす実数$a,\ b$の値を求めよ.
(2)$x$の多項式$x^4-px+q$が$(x-1)^2$で割り切れるとき,定数$p,\ q$の値を求めよ.
(3)$\theta$が方程式$\displaystyle \cos 2\theta-2 \sin \theta=\frac{47}{50}$を満たすとき,$\sin \theta$の値を求めよ.
(4)次の極限値を求めよ.
\[ \lim_{x \to 0}\frac{(\sqrt{x^2+x+4}-\sqrt{x^2+4}) \sin 2x}{x^2} \]
(5)空間内に$5$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$があり,次の等式を満たしている.
\[ \overrightarrow{\mathrm{EA}}+\overrightarrow{\mathrm{EB}}+\overrightarrow{\mathrm{EC}}+\overrightarrow{\mathrm{ED}}=\overrightarrow{\mathrm{0}},\quad \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{CD}} \]
$\overrightarrow{\mathrm{EB}}$を$\overrightarrow{\mathrm{EA}}$と$\overrightarrow{\mathrm{EC}}$を用いて表せ.ただし,$\overrightarrow{\mathrm{0}}$は零ベクトルである.
大分大学 国立 大分大学 2013年 第2問
連立不等式$\left\{ \begin{array}{l}
y \geqq |2x-3| \\
y \leqq x
\end{array} \right.$の表す領域を$D$とする.

(1)領域$D$を図示しなさい.
(2)$a$を$2$でない正の定数とする.点$(x,\ y)$が領域$D$内を動くとき,$ax+y$の最大値と最小値,およびそのときの点$(x,\ y)$を求めなさい.
(3)点$(x,\ y)$が領域$D$内を動くとき,$x^2+y^2$の最小値とそのときの点$(x,\ y)$を求めなさい.
大分大学 国立 大分大学 2013年 第1問
連立不等式$\left\{ \begin{array}{l}
y \geqq |2x-3| \\
y \leqq x
\end{array} \right.$の表す領域を$D$とする.

(1)領域$D$を図示しなさい.
(2)$a$を$2$でない正の定数とする.点$(x,\ y)$が領域$D$内を動くとき,$ax+y$の最大値と最小値,およびそのときの点$(x,\ y)$を求めなさい.
(3)点$(x,\ y)$が領域$D$内を動くとき,$x^2+y^2$の最小値とそのときの点$(x,\ y)$を求めなさい.
和歌山大学 国立 和歌山大学 2013年 第3問
$a$を正の定数とする.次の方程式で表される円$C_1$と放物線$C_2$がある.
\[ C_1:(x-2a)^2+y^2=a^2,\quad C_2:y=\frac{2}{5a^2}x^2+1 \]
$C_1$の中心を$\mathrm{P}$,$C_2$の頂点を$\mathrm{Q}$とし,$\mathrm{PR}^2-\mathrm{QR}^2=a^2-1$を満たす点$\mathrm{R}$の軌跡を$C_3$とする.このとき,次の問いに答えよ.

(1)$C_3$を表す方程式を求めよ.
(2)$C_1$と$C_3$が共有点をもつとき,$C_2$と$C_3$は共有点をもたないことを示せ.
鳥取大学 国立 鳥取大学 2013年 第3問
$a,\ b$を正の定数とする.曲線$y=e^{-ax}\sin bx \ (x \geqq 0)$と$x$軸とで囲まれた図形で$x$軸の下側にある部分の面積を,$y$軸に近い方から順に$S_1,\ S_2,\ S_3,\ \cdots$とするとき,無限級数$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
鳥取大学 国立 鳥取大学 2013年 第4問
実数$t$の関数$\alpha(t),\ \beta(t)$を$\displaystyle \alpha(t)=\frac{e^t+e^{-t}}{2}$,$\displaystyle \beta(t)=\frac{e^t-e^{-t}}{2}$で定める.実数の定数$p$に対して点$\mathrm{P}(x,\ y)$の$x$座標および$y$座標を,複素数
\[ z=\frac{ip \alpha(t)+\beta(t)}{ip \beta(t)+\alpha(t)} \]
の実部および虚部でそれぞれ与える.ただし$i$は虚数単位とする.

(1)$\{\alpha(t)\}^2-\{\beta(t)\}^2=1$となることを示し,$x,\ y$を$t$の関数として表せ.
(2)点$\mathrm{P}$の$x$座標の$t \to \infty$および$t \to -\infty$のときの極限値をそれぞれ求めよ.
(3)$p \neq 0$のとき,点$\mathrm{P}$の描く曲線を$x$と$y$の関係式で表せ.
鹿児島大学 国立 鹿児島大学 2013年 第2問
次の各問いに答えよ.

(1)次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) $m,\ n$が自然数ならば,$\displaystyle \frac{m}{n} \neq \sqrt{2}$である.このことを証明せよ.
(ii) $p,\ q$が自然数ならば,$\sqrt{2}$は$\displaystyle \frac{p}{q}$と$\displaystyle \frac{2q}{p}$の間にある.すなわち,$\displaystyle \frac{p}{q}<\sqrt{2}<\frac{2q}{p}$または$\displaystyle \frac{2q}{p}<\sqrt{2}<\frac{p}{q}$が成り立つ.このことを証明せよ.

(2)定数$a$は実数で,$a>0,\ a \neq 1$とする.このとき,すべての正の実数$x,\ y$に対して$x^{\log_ay}=y^{\log_ax}$が成り立つ.このことを証明せよ.
鹿児島大学 国立 鹿児島大学 2013年 第3問
次の各問いに答えよ.

(1)次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) $m,\ n$が自然数ならば,$\displaystyle \frac{m}{n} \neq \sqrt{2}$である.このことを証明せよ.
(ii) $p,\ q$が自然数ならば,$\sqrt{2}$は$\displaystyle \frac{p}{q}$と$\displaystyle \frac{2q}{p}$の間にある.すなわち,$\displaystyle \frac{p}{q}<\sqrt{2}<\frac{2q}{p}$または$\displaystyle \frac{2q}{p}<\sqrt{2}<\frac{p}{q}$が成り立つ.このことを証明せよ.

(2)定数$a$は実数で,$a>0,\ a \neq 1$とする.このとき,すべての正の実数$x,\ y$に対して$x^{\log_ay}=y^{\log_ax}$が成り立つ.このことを証明せよ.
自治医科大学 私立 自治医科大学 2013年 第15問
円$C:x^2+y^2-4x-5=0$,直線$L:y=2x+k$について考える($k$は正の実数定数).円$C$と直線$L$は,異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わる.線分$\mathrm{PQ}$の長さが$4$となるとき,$k$の値を求めよ.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。