タグ「定数」の検索結果

44ページ目:全1257問中431問~440問を表示)
島根大学 国立 島根大学 2014年 第3問
$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$,$O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$とおく.$x$を実数とし,行列
\[ X=\left( \begin{array}{cc}
3x-1 & 2x-1 \\
-3x+2 & -2x+2
\end{array} \right) \]
を定める.このとき,次の問いに答えよ.

(1)自然数$n$に対して$X$の$n$乗を$X^n=\left( \begin{array}{cc}
P_n(x) & Q_n(x) \\
R_n(x) & S_n(x)
\end{array} \right)$とおく.このとき,すべての$n$に対して,$\displaystyle x=\frac{1}{2}$のとき,$Q_n(x)=0$であることを示せ.また,すべての$n$に対して,$\displaystyle x=\frac{2}{3}$のとき,$R_n(x)=0$であることを示せ.
(2)$a$と$b$は定数とする.このとき,$X^2+aX+bE=O$をみたす実数$x$が存在するための$a,\ b$の条件を求めよ.
(3)$X^3=O$をみたす実数$x$は存在しないことを証明せよ.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第2問
座標平面上の点$(x,\ y)$に対し$f(x,\ y)$,$g(x,\ y)$を次で定める.
\[ \begin{array}{l}
f(x,\ y)=(x-3)^2+y^2-4 \\
g(x,\ y)=\sqrt{3}x-4y \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
以下の問いに答えよ.

(1)連立不等式
\[ f(x,\ y) \leqq 0,\quad g(x,\ y) \leqq 0 \]
の表す領域を$D$とする.$D$を図示せよ.
(2)円$f(x,\ y)=0$と直線$g(x,\ y)=0$の交点において,円$f(x,\ y)=0$と接する直線の方程式を求めよ.
(3)$D$を$(1)$で定めた領域とする.点$(x,\ y)$が領域$D$内を動くとき,$ax+y$の最大値,最小値を求めよ.ただし,$a$は正の定数である.
鳥取大学 国立 鳥取大学 2014年 第3問
実数の定数$a,\ b$に対し,関数$f(x)=\sin^2 2x-a(4 \cos^2 x-\cos 2x-2)+b$が与えられている.

(1)$t=\cos 2x$として$f(x)$を$t,\ a,\ b$を用いて表せ.
(2)すべての実数$x$に対して不等式$-1 \leqq f(x) \leqq 3$が成り立つような点$(a,\ b)$の範囲を図示せよ.
鳥取大学 国立 鳥取大学 2014年 第1問
実数の定数$a,\ b$に対し,関数$f(x)=\sin^2 2x-a(4 \cos^2 x-\cos 2x-2)+b$が与えられている.

(1)$t=\cos 2x$として$f(x)$を$t,\ a,\ b$を用いて表せ.
(2)すべての実数$x$に対して不等式$-1 \leqq f(x) \leqq 3$が成り立つような点$(a,\ b)$の範囲を図示せよ.
東京学芸大学 国立 東京学芸大学 2014年 第3問
$0<x<2\pi$のとき,$y=2 \sin x$のグラフと$y=a-\cos 2x$のグラフが接するように定数$a$の値を定め,そのときの$2$つのグラフをかけ.ただし,$2$つのグラフがある共有点で共通の接線をもつとき,これらのグラフは接するという.
長崎大学 国立 長崎大学 2014年 第1問
$p$を正の定数として,放物線$C:y=(x-p)^2+p^2$を考える.$C$の$2$本の接線$\ell,\ m$を考え,接点の$x$座標を,それぞれ$a,\ b$とする.ただし,$a<0$,$b>0$とする.次の問いに答えよ.

(1)$\ell$と$m$の方程式を求めよ.
(2)$\ell,\ m$が原点を通るとき,$a,\ b$を$p$を用いて表せ.
(3)$\ell,\ m$が原点を通るとき,放物線$C$と$2$本の接線$\ell$および$m$によって囲まれた図形の面積を$S$とする.$S$を$p$を用いて表せ.
長崎大学 国立 長崎大学 2014年 第4問
区間$0 \leqq x \leqq \pi$において,関数$f(x)$と関数$g(x)$を
\[ f(x)=\frac{1}{2} \cos x,\quad g(x)=\cos \frac{x}{2}+c \]
と定義する.$c$は定数である.次の問いに答えよ.

(1)区間$0 \leqq x \leqq \pi$において,$2$曲線$y=f(x)$と$y=g(x)$が$x=0$以外の点で接するように$c$の値を定め,接点$(p,\ q)$を求めよ.また,そのとき,区間$0 \leqq x \leqq \pi$における関数$f(x)$と関数$g(x)$の大小関係を調べよ.
(2)定数$c$と接点$(p,\ q)$は$(1)$で求めたものとする.そのとき,区間$0 \leqq x \leqq p$において,$y$軸および$2$曲線$y=f(x)$,$y=g(x)$によって囲まれた図形を$D$とする.$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
愛媛大学 国立 愛媛大学 2014年 第2問
次の問いに答えよ.

(1)すべての実数$x$に対して
\[ f(x)=\sin \pi x+\int_0^1 tf(t) \, dt \]
が成り立つような関数$f(x)$を求めよ.
(2)次の極限値を求めよ.
\[ \lim_{\theta \to 0} \frac{\theta^3}{\tan \theta-\sin \theta} \]
(3)次の極限値を求めよ.
\[ \lim_{n \to \infty} \sum_{k=n+1}^{2n} \frac{1}{k} \]
(4)関数$f(x)=|x| (e^x+a)$は$x=0$において微分可能であるとする.このとき,定数$a$の値を求めよ.
愛媛大学 国立 愛媛大学 2014年 第5問
$n$は自然数,$p_0$,$p_1$,$\cdots$,$p_n$は$p_0>0$,$\cdots$,$p_n>0$かつ$p_0+p_1+\cdots+p_n=1$を満たす定数とする.ポイント$0,\ 1,\ 2,\ \cdots,\ n-1,\ n$が,それぞれ$p_0,\ p_1,\ p_2,\ \cdots,\ p_{n-1},\ p_n$の確率で得られる試行$T$を考える.試行$T$を$1$回行って得られるポイントの期待値を$a$とし,$A=[a]+1$とする.ただし,実数$x$に対して$[x]$は$x$を超えない最大の整数を表す.競技者は,試行$T$を下記の各設問のルールに従って何回か行う.

(1)$k$を$1 \leqq k \leqq n$を満たす整数とする.競技者は,試行$T$を以下のルールに従って最大$2$回まで行う.

\mon[$①$] 試行$T$を$1$回行い,もしポイントが$k$以上であれば$2$回目の試行を行わず,このポイントを賞金とする.
\mon[$②$] $1$回目のポイントが$k$未満であれば$2$回目の試行$T$を行う.このとき,$1$回目のポイントは無効とし,$2$回目のポイントを賞金とする.
このとき賞金の期待値を$b_k$とする.$b_k$を求めよ.

(2)$(1)$の期待値$b_k$は$k$が$A$のとき最大となることを示せ.
(3)$m$を$1 \leqq m \leqq n$を満たす整数とする.競技者は,試行$T$を以下のルールに従って最大$3$回まで行う.

\mon[$①$] 試行$T$を$1$回行い,もしポイントが$m$以上であれば$2$回目以降の試行を行わず,このポイントを賞金とする.
\mon[$②$] $1$回目のポイントが$m$未満であれば$2$回目の試行$T$を行う.$2$回目のポイントが$A$以上であれば$3$回目の試行を行わない.このとき,$1$回目のポイントは無効とし,$2$回目のポイントを賞金とする.
\mon[$③$] $2$回目のポイントが$A$未満であれば$3$回目の試行$T$を行う.このとき,$1$回目,$2$回目のポイントは無効とし,$3$回目のポイントを賞金とする.
このとき賞金の期待値を$c_m$とする.$c_m$を求めよ.

(4)$(3)$の期待値$c_m$は$m$が$B=[b_A]+1$のとき最大となり,$c_B \geqq b_A$であることを示せ.ただし,$b_A$は$(1)$で求めた期待値$b_k$の$k=A$のときの値である.
(5)$n=5$とし,試行$T$として,$5$枚の硬貨を同時に投げ,表の出た枚数をポイントとする試行を考える.また,$b_k$,$c_m$は上記で定義したものとする.

(i) $p_0$,$p_1$,$p_2$,$p_3$,$p_4$,$p_5$,$a$を求めよ.
(ii) $(1)$のように最大$2$回試行を行う場合,$b_k$の最大値を求めよ.
(iii) $(3)$のように最大$3$回試行を行う場合,$c_m$の最大値を求めよ.
福島大学 国立 福島大学 2014年 第1問
次の問いに答えなさい.

(1)$a,\ b$を正の実数とするとき,不等式
\[ a^3+b^3 \geqq a^2b+ab^2 \]
が成り立つことを示しなさい.
(2)$2$次方程式
\[ 2x^2-kx+1=0 \]
が,$0<x<1$および$1<x<2$の範囲に解を$1$つずつもつとき,定数$k$の値の範囲を求めなさい.
(3)正の実数$x,\ y,\ z$が
\[ \frac{yz}{x}=\frac{zx}{4y}=\frac{xy}{9z} \]
を満たすとする.このとき,式
\[ \frac{x+y+z}{\sqrt{x^2+y^2+z^2}} \]
の値を求めなさい.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。