タグ「定数」の検索結果

43ページ目:全1257問中421問~430問を表示)
室蘭工業大学 国立 室蘭工業大学 2014年 第2問
$a$を定数とし,$e$を自然対数の底とする.曲線$y=xe^{-x^2}$および直線$y=ax$をそれぞれ$C,\ L$とする.$C$と$L$は原点$(0,\ 0)$以外に交点をもつ.

(1)$a$の値の範囲を求めよ.また,$C$と$L$の交点でその$x$座標が正であるものを$a$を用いて表せ.
(2)$x \geqq 0$において$C$と$L$で囲まれた部分の面積を$S(a)$とするとき,$S(a)$を求めよ.
(3)$\displaystyle S(a)<\frac{1}{2}$であることを示せ.
福井大学 国立 福井大学 2014年 第1問
三角形$\mathrm{OAB}$は$\mathrm{OA}=\mathrm{OB}=1$を満たす二等辺三角形とする.$t$を$\displaystyle \frac{1}{2}<t<1$を満たす定数とし,辺$\mathrm{AB}$を$1:t$に内分する点を$\mathrm{M}$,$\angle \mathrm{AOM}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{N}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$と表すとき,以下の問いに答えよ.

(1)$\mathrm{OM}=s$とおく.$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$s$,$t$を用いて表せ.
(2)$\mathrm{AN}=\mathrm{BM}$のとき,内積$\overrightarrow{a} \cdot \overrightarrow{b}$を$t$を用いて表せ.
(3)$\cos \angle \mathrm{BOM}=x$とおく.$(2)$の仮定のもとで,さらに$x^2+\overrightarrow{a} \cdot \overrightarrow{b}=0$が成り立っているとき,辺$\mathrm{AB}$の長さを求めよ.
福井大学 国立 福井大学 2014年 第2問
$\triangle \mathrm{OAB}$は$\mathrm{OA}=\mathrm{OB}=1$を満たす二等辺三角形とする.$t$を$\displaystyle \frac{1}{2}<t<1$を満たす定数とし,辺$\mathrm{AB}$を$t:1$に内分する点を$\mathrm{M}$,$1:t$に内分する点を$\mathrm{N}$としたとき,$\angle \mathrm{AOB}=3 \angle \mathrm{AOM}$が成り立つとする.このとき,次の問いに答えよ.

(1)$\displaystyle \mathrm{ON}=\frac{1-t}{t}$であることを証明せよ.
(2)$x=\cos \angle \mathrm{AOB}$,$y=\cos \angle \mathrm{AOM}$とするとき,$x,\ y$を$t$を用いて表せ.
(3)$x=-y^2$が成り立つときの,$t$の値と辺$\mathrm{AB}$の長さを求めよ.
福井大学 国立 福井大学 2014年 第1問
$\triangle \mathrm{OAB}$は$\mathrm{OA}=\mathrm{OB}=1$を満たす二等辺三角形とする.$t$を$\displaystyle \frac{1}{2}<t<1$を満たす定数とし,辺$\mathrm{AB}$を$1:t$に内分する点を$\mathrm{P}$,$\angle \mathrm{AOP}$の二等分線と辺$\mathrm{AB}$との交点を$\mathrm{Q}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$k=\mathrm{OP}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$と$t$を用いて表せ.
(2)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$と$t$,$k$を用いて表せ.
(3)$\mathrm{AQ}=\mathrm{BP}$が成り立つとする.$k$を$t$を用いて表せ.また内積$\overrightarrow{a} \cdot \overrightarrow{b}$を$t$を用いて表せ.
浜松医科大学 国立 浜松医科大学 2014年 第2問
関数$\displaystyle f(x)=\frac{3 \sqrt{3}}{\sin x}-\frac{1}{\cos x} \left( 0<|x|<\frac{\pi}{2} \right)$を考える.以下の問いに答えよ.

(1)$y=f(x)$の増減表を作成し,極値を求めよ.
(2)$f(x)$の第$2$次導関数$f^{\prime\prime}(x)$は,$3$次式$P(t)=t(2t^2-1)$を用いて,
\[ f^{\prime\prime}(x)=3 \sqrt{3} P \left( \frac{1}{\sin x} \right)-P \left( \frac{1}{\cos x} \right) \]
と表されることを示せ.また,$\displaystyle 0<x_1<x_2<\frac{\pi}{2}$のとき$f^{\prime\prime}(x_1)>f^{\prime\prime}(x_2)$となることを示せ.
(3)$k$を定数とするとき,方程式$f(x)=k$の異なる実数解は何個あるか.$k$の値によって分類せよ.
(4)$y=f(x)$の変曲点はただ$1$つ存在することを示せ.また,この変曲点が第何象限にあるか,調べよ.
島根大学 国立 島根大学 2014年 第2問
$\displaystyle f(x)=\frac{8x}{\sqrt{x^2+1}}$とするとき,次の問いに答えよ.

(1)関数$y=f(x)$の凹凸と漸近線を調べて,そのグラフの概形をかけ.
(2)$k$を正の定数とする.関数$y=f(x)$のグラフと直線$y=x+k$がちょうど$2$個の共有点をもつとき,$k$の値を求めよ.
(3)$k$を$(2)$で求めた定数とする.このとき,$x \geqq 0$の範囲で,関数$y=f(x)$のグラフと直線$y=x+k$および$y$軸で囲まれた図形の面積$S$を求めよ.
島根大学 国立 島根大学 2014年 第4問
$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$,$O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$とおく.$x$を実数とし,行列
\[ X=\left( \begin{array}{cc}
3x-1 & 2x-1 \\
-3x+2 & -2x+2
\end{array} \right) \]
を定める.このとき,次の問いに答えよ.

(1)自然数$n$に対して$X$の$n$乗を$X^n=\left( \begin{array}{cc}
P_n(x) & Q_n(x) \\
R_n(x) & S_n(x)
\end{array} \right)$とおく.このとき,すべての$n$に対して,$\displaystyle x=\frac{1}{2}$のとき,$Q_n(x)=0$であることを示せ.また,すべての$n$に対して,$\displaystyle x=\frac{2}{3}$のとき,$R_n(x)=0$であることを示せ.
(2)$a$と$b$は定数とする.このとき,$X^2+aX+bE=O$をみたす実数$x$が存在するための$a,\ b$の条件を求めよ.
(3)$X^3=O$をみたす実数$x$は存在しないことを証明せよ.
島根大学 国立 島根大学 2014年 第2問
$\displaystyle f(x)=\frac{8x}{\sqrt{x^2+1}}$とするとき,次の問いに答えよ.

(1)関数$y=f(x)$の凹凸と漸近線を調べて,そのグラフの概形をかけ.
(2)$k$を正の定数とする.関数$y=f(x)$のグラフと直線$y=x+k$がちょうど$2$個の共有点をもつとき,$k$の値を求めよ.
(3)$k$を$(2)$で求めた定数とする.このとき,$x \geqq 0$の範囲で,関数$y=f(x)$のグラフと直線$y=x+k$および$y$軸で囲まれた図形の面積$S$を求めよ.
宇都宮大学 国立 宇都宮大学 2014年 第6問
関数$f(x)$を$\displaystyle f(x)=\frac{k}{x+1}-1$と定める.ただし,$k$は正の定数である.このとき,次の問いに答えよ.

(1)$y=f(x)$のグラフが$x$軸と交わる点の$x$座標を$k$を用いて表せ.
(2)$\displaystyle S=\int_0^2 |f(x)| \, dx$を求めよ.
(3)$(2)$における$S$を最小にする$k$と,そのときの$S$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第2問
座標平面上の点$(x,\ y)$に対し$f(x,\ y)$,$g(x,\ y)$を次で定める.
\[ \begin{array}{l}
f(x,\ y)=(x-3)^2+y^2-4 \\
g(x,\ y)=\sqrt{3}x-4y \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
以下の問いに答えよ.

(1)連立不等式
\[ f(x,\ y) \leqq 0,\quad g(x,\ y) \leqq 0 \]
の表す領域を$D$とする.$D$を図示せよ.
(2)円$f(x,\ y)=0$と直線$g(x,\ y)=0$の交点において,円$f(x,\ y)=0$と接する直線の方程式を求めよ.
(3)$D$を$(1)$で定めた領域とする.点$(x,\ y)$が領域$D$内を動くとき,$ax+y$の最大値,最小値を求めよ.ただし,$a$は正の定数である.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。