タグ「定数」の検索結果

34ページ目:全1257問中331問~340問を表示)
京都薬科大学 私立 京都薬科大学 2015年 第4問
次の$[ ]$にあてはまる数または式を記入せよ.なお,$k>0$として,解答はすべて数あるいは$k$を用いた式で示すこと.

(1)$2$次関数$f(x)=-x^2+(k-1)x+k$を考える.放物線$y=f(x)$の頂点の座標は$([ア],\ [イ])$となり,この放物線上の点$(0,\ f(0))$における接線を$\ell$とすると,$\ell$の方程式は$y=([ウ])x+[エ]$となる.
(2)次に$2$次関数$g(x)=x^2+ax+b$($a,\ b$は定数)を考える.放物線$y=g(x)$が点$(k,\ 0)$において放物線$y=f(x)$と接線を共有するとき,$a,\ b$の値はそれぞれ$[オ]$,$[カ]$であり,$\ell$と放物線$y=g(x)$との交点の$x$座標はそれぞれ$[キ]$,$[ク]$となる(ただし$[キ]<[ク]$とする).
(3)さらに$\ell$と放物線$y=g(x)$とで囲まれた部分の面積を$S$とするとき,$S$を$k$で表すと$[ケ]$となる.また,$\ell$は$k=[コ]$のとき放物線$y=g(x)$と$x$軸上で交わり,そのときの$S$は$[サ]$となる.
明治大学 私立 明治大学 2015年 第2問
数列$\{a_n\}$は$a_1=0$,$a_{n+1}=2a_n+2n-1 (n=1,\ 2,\ 3,\ \cdots)$をみたすとする.このとき,$a_2=[ア]$,$a_3=[イ]$である.

$\{a_n\}$の一般項を求めたい.$b_n=a_n+cn+d$が漸化式
\[ b_{n+1}=2b_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたすように定数$c$と$d$を定めると,$c=[ウ]$,$d=[エ]$となる.
したがって,$a_n=[オ] \cdot [カ]^{n-1}-[ウ]n-[エ]$となる.
明治大学 私立 明治大学 2015年 第3問
次の空欄に当てはまる数字を入れよ.

(1)$y=(x-1) |x-2|$のグラフと$y=k$のグラフが異なる$3$点で交わるような定数$k$の値の範囲は
\[ [ア]<k<\frac{[イ]}{[ウ]} \]
である.
(2)$y=(x-1) |x-2|$のグラフと$y=kx+k-1$のグラフが異なる$3$点で交わるような定数$k$の値の範囲は
\[ \frac{[エ]}{[オ]}<k<[カ]-[キ] \sqrt{[ク]} \]
または
\[ [カ]+[キ] \sqrt{[ク]}<k \]
である.
(3)$k>1$のとき,$y=(x-1) |x-k|$のグラフと$y=kx-k^2+1$のグラフが異なる$3$点で交わるような定数$k$の値の範囲は
\[ \frac{[ケ]}{[コ]}<k \]
である.これらの交点の$x$座標を小さいほうから$x_1,\ x_2,\ x_3$とする.
このとき,$x_3-x_2=k$となるような$k$の値は$[サ]$である.
中京大学 私立 中京大学 2015年 第2問
$2$次関数$y=2x^2-4x+a^2+a$のグラフが$x$軸に接するとき,定数$a$の値は$-[ア]$,$[イ]$であり,このとき,この関数の$0 \leqq x \leqq 3$における最大値は$[ウ]$である.
中京大学 私立 中京大学 2015年 第5問
$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=k$,$\angle \mathrm{AOB}=\angle \mathrm{BOC}={60}^\circ$,$\angle \mathrm{COA}={45}^\circ$の四面体$\mathrm{OABC}$がある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,底面$\mathrm{ABC}$上に点$\mathrm{H}$をとる.このとき,$\overrightarrow{\mathrm{OH}}$は定数$l,\ m,\ n$を用いて$\overrightarrow{\mathrm{OH}}=l \overrightarrow{a}+m \overrightarrow{b}+n \overrightarrow{c} (l+m+n=1)$と表される.$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{OH}}$が垂直であるとき,$l-m-([ア]-\sqrt{[イ]})n=0$であり,$\overrightarrow{\mathrm{OH}}$が底面$\mathrm{ABC}$と垂直であるとき,$\displaystyle l=[ウ]-\frac{\sqrt{[エ]}}{2}$,$m=\sqrt{[オ]}-[カ]$であり,さらに線分$\mathrm{OH}$の長さが$2$であるとき,$k^2=[キ] \sqrt{2}$である.
千葉工業大学 私立 千葉工業大学 2015年 第1問
次の各問に答えよ.

(1)実数$x,\ y$が$(3+2i)x-(2+5i)y=6-7i$(ただし,$i^2=-1$)をみたすとき,$x=[ア]$,$y=[イ]$である.
(2)不等式$\displaystyle \frac{x-4}{3}<\frac{x-3}{2}<\frac{x-2}{6}$の解は$\displaystyle [ウ]<x<\frac{[エ]}{[オ]}$である.
(3)三角形$\mathrm{ABC}$において,$A={120}^\circ$,$B={45}^\circ$,$\mathrm{BC}=6 \sqrt{2}$のとき,$\mathrm{CA}=[カ] \sqrt{[キ]}$である.
(4)$3$個のサイコロを同時に投げるとき,出た目の和が$4$である確率は$\displaystyle \frac{[ク]}{[ケコ]}$,出た目の和が$16$である確率は$\displaystyle \frac{[サ]}{[シス]}$である.
(5)整式$2x^3+ax^2-bx-14$が$x^2-4$で割り切れるとき,定数$a,\ b$の値は$\displaystyle a=\frac{[セ]}{[ソ]}$,$b=[タ]$である.
(6)方程式$16^x-9 \cdot 4^x+8=0$の解は$\displaystyle x=[チ],\ \frac{[ツ]}{[テ]}$である.
(7)不等式$\displaystyle \log_2 (x-3)<\frac{1}{2} \log_2 (2x-3)$の解は$[ト]<x<[ナ]$である.
(8)関数$f(x)=x^3-ax^2+(a+3)x+4$が$x=3$で極値をとるとき,定数$a$の値は$[ニ]$であり,$f(x)$の極大値は$[ヌ]$である.
千葉工業大学 私立 千葉工業大学 2015年 第2問
次の各問に答えよ.

(1)すべての実数$x$に対して
\[ x^2-3ax-a+7 \geqq 0 \cdots\cdots (*) \]
が成り立つような定数$a$の値の範囲は$\displaystyle [アイ] \leqq a \leqq \frac{[ウエ]}{[オ]}$である.

$x \leqq 1$であるすべての$x$に対して$(*)$が成り立つような$a$の値の範囲は

$[カキ] \leqq a \leqq [ク]$である.
(2)$\displaystyle F=\sin \left( \theta+\frac{\pi}{6} \right)+\cos \theta$は

$\displaystyle F=\frac{\sqrt{[ケ]}}{[コ]} \sin \theta+\frac{[サ]}{[シ]} \cos \theta$

$\phantom{F}=\sqrt{[ス]} \sin \left( \theta+\displaystyle\frac{[セ]}{[ソ]} \pi \right)$

と変形できる.ここで,$\displaystyle 0 \leqq \frac{[セ]}{[ソ]} \pi<2\pi$とする.$0 \leqq \theta<2\pi$のとき,

$\displaystyle F \leqq -\frac{\sqrt{6}}{2}$をみたす$\theta$の値の範囲は$\displaystyle \frac{[タチ]}{[ツテ]} \pi \leqq \theta \leqq \frac{[トナ]}{[ツテ]} \pi$である.
千葉工業大学 私立 千葉工業大学 2015年 第3問
次の各問に答えよ.

(1)$\displaystyle f(x)=|\displaystyle\frac{7|{2}x-3}-x$とする.方程式$f(x)=0$の解は,小さい順に,$\displaystyle x=\frac{[ア]}{[イ]}$,$\displaystyle \frac{[ウ]}{[エ]}$である.

折れ線$L:y=|f(x)|$と直線$y=k$(ただし,$k$は定数)がちょうど$3$点を共有するのは$\displaystyle k=\frac{[オ]}{[カ]}$のときであり,$L$と直線$y=mx-1$(ただし,$m$は定数)がちょうど$3$点を共有するのは$\displaystyle m=\frac{[キ]}{[ク]},\ \frac{[ケコ]}{[サ]}$のときである.

(2)三角形$\mathrm{ABC}$の内部の点$\mathrm{P}$に対して,等式$\overrightarrow{\mathrm{AP}}+5 \overrightarrow{\mathrm{BP}}+4 \overrightarrow{\mathrm{CP}}=k \overrightarrow{\mathrm{AB}}$(ただし,$k$は実数)が成り立つ.このとき,
\[ \overrightarrow{\mathrm{AP}}=\frac{k+[シ]}{[スセ]} \overrightarrow{\mathrm{AB}}+\frac{[ソ]}{[タ]} \overrightarrow{\mathrm{AC}} \]
である.直線$\mathrm{AP}$と辺$\mathrm{BC}$との交点$\mathrm{Q}$が$\mathrm{BC}$を$3:2$に内分するとき,
\[ \overrightarrow{\mathrm{AP}}=\frac{[チ]}{[ツ]} \overrightarrow{\mathrm{AQ}},\quad k=\frac{[テト]}{[ナ]} \]
である.
藤田保健衛生大学 私立 藤田保健衛生大学 2015年 第3問
$n$を$3$以上の整数とする.$(x-1)^2P(x)+ax+b=x^n+x^{n-1}+\cdots +x+1$が成り立っているとする.ただし$P(x)$は$x$の整式とし,$a,\ b$は定数であるとする.この等式の左辺を微分すると$[$6$]$である.このとき$(a,\ b)=[$7$]$である.
龍谷大学 私立 龍谷大学 2015年 第2問
$x$についての$2$次方程式
\[ 5x^2-4ax-10x+a^2+4a-5=0 \]
が異なる$2$つの正の実数解をもつ.このとき,定数$a$の値の範囲を求めなさい.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。