タグ「定数」の検索結果

30ページ目:全1257問中291問~300問を表示)
西南学院大学 私立 西南学院大学 2015年 第4問
$p$を定数とする.等差数列$\{a_n\}$の初項から第$n$項までの和$S_n$が
\[ S_n=pn^2-8pn+p+4 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で表される.このとき,$p=[ホマ]$である.また,$\{a_n\}$の初項は$[ミム]$,公差は$[メモ]$であり,$S_n$は$n=[ヤ]$のとき最大となる.
九州産業大学 私立 九州産業大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{1+\sqrt{13}}{2}$とするとき,$x^2-x=[ア]$,$x^3-4x+10=[イウ]$である.
(2)不等式$x^2+2x \leqq -x \leqq -x^2-2x+2$の解は$[エオ] \leqq x \leqq [カ]$である.
(3)$m$を定数とする.放物線$C:y=x^2-2mx+9$について,

(i) 放物線$C$が$x$軸に接するとき,$m=\pm [キ]$である.
(ii) 放物線$C$が$x$軸と異なる$2$点で交わり,$x$軸から切り取る線分の長さが$8$であるとき,$m=\pm [ク]$である.
(iii) 放物線$C$が$x$軸の負の部分と異なる$2$点で交わるような定数$m$の値の範囲は$m<[ケコ]$である.

(4)$5$人が$1$回じゃんけんを行うとき,

(i) $1$人が勝ち,$4$人が負ける確率は$\displaystyle \frac{[サ]}{[シス]}$である.

(ii) $2$人が勝ち,$3$人が負ける確率は$\displaystyle \frac{[セソ]}{[タチ]}$である.

(iii) 誰も勝たない,すなわち,あいこになる確率は$\displaystyle \frac{[ツテ]}{[トナ]}$である.
九州産業大学 私立 九州産業大学 2015年 第5問
$\displaystyle 0<x \leqq \frac{1}{2}\pi$のとき,関数$f(x)=\{1+\log (\sin x)\} \cos x$,曲線$L:y=f(x)$について考える.

(1)$f(x)=0$のとき$\sin x$の値は$[ア]$と$[イ]$である.
(2)関数$f(x)$の導関数$f^\prime(x)=[ウ]$である.
(3)不定積分$\displaystyle \int f(x) \, dx=[エ]+C$である.ここで$C$は積分定数とする.
(4)曲線$L$と$x$軸で囲まれた部分の面積は$[オ]$である.
昭和大学 私立 昭和大学 2015年 第1問
次の各問に答えよ.

(1)$x$の関数$f(x),\ g(x)$をそれぞれ$f(x)=-x^2+2x+2$,$g(x)=x^2+2x+a$とする.ただし,$a$は定数とする.
$(1$-$1)$ $g(x)<f(x)$を満たす実数$x$が区間$-2 \leqq x \leqq 2$に存在するような,定数$a$の値の範囲を求めよ.
$(1$-$2)$ $g(x_1)<f(x_2)$を満たす実数$x_1$および$x_2$が区間$-2 \leqq x \leqq 2$に存在するような,定数$a$の値の範囲を求めよ.
(2)白球$4$個と黒球$n$個が入った袋から同時に$2$個の球を取り出すとき,$2$個の球が同色である確率を$p_n$とする.ただし,球はすべて同じ確率で取り出されるものとする.
$(2$-$1)$ $n=3$のとき,$p_n$の値を求めよ.
$(2$-$2)$ $n \geqq 2$とする.このとき,$\displaystyle p_n \geqq \frac{1}{2}$となる整数$n$の最小値を求めよ.
(3)$0 \leqq x<2\pi$のとき,不等式$\sin x+\sqrt{3} \cos x \geqq \sqrt{2}$を解け.
(4)$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.$6^{100}$の桁数を求めよ.
昭和大学 私立 昭和大学 2015年 第3問
次の各問に答えよ.

(1)空間に$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 2,\ 3)$,$\mathrm{B}(2,\ -1,\ 4)$がある.次の問に答えよ.
$(1$-$1)$ $\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$の内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を求めよ.
$(1$-$2)$ $\cos \angle \mathrm{AOB}$の値を求めよ.
$(1$-$3)$ $\triangle \mathrm{OAB}$の面積を求めよ.
(2)$\displaystyle \left( 2x^3-\frac{1}{3x} \right)^9$の展開式における$\displaystyle \frac{1}{x}$の係数を求めよ.
(3)実数全体で定義された関数$\displaystyle f(x)=\frac{x^4+5x^2+11}{x^2+2}$の最小値を求めよ.
(4)曲線$y=\sqrt{2+|4x-2x^2|}$と直線$y=m(x+3)$が相異なる$4$個の交点をもつような定数$m$の値の範囲を求めよ.
昭和大学 私立 昭和大学 2015年 第4問
次の各問に答えよ.

(1)次の問に答えよ.
$(1$-$1)$ $\displaystyle \int_0^1 \frac{dx}{1+x^2}$の値を求めよ.
$(1$-$2)$ 極限値$\displaystyle S=\lim_{n \to \infty} \left( \frac{n+3 \cdot 1}{n^2+1^2}+\frac{n+3 \cdot 2}{n^2+2^2}+\cdots +\frac{n+3 \cdot n}{n^2+n^2} \right)$を求めよ.
(2)$\displaystyle \lim_{x \to \pi} \frac{\sqrt{a+\cos x}-b}{(x-\pi)^2}=\frac{1}{8}$となるような定数$a,\ b$を求めよ.
東京都市大学 私立 東京都市大学 2015年 第4問
$a$を定数とし,$0 \leqq x \leqq 3$とする.関数$f(x)$を
\[ f(x)=x-6x^{\frac{1}{3}} \]
と定める.直線$y=-x+a$が曲線$y=f(x)$に接するとき,次の問に答えよ.

(1)$a$の値を求めよ.
(2)$f(x)$の増減を調べ,極値を求めよ.
(3)曲線$y=f(x)$の概形を描け.
(4)曲線$y=f(x)$,直線$y=-x+a$および$y$軸で囲まれる部分の面積$S$を求めよ.
東京都市大学 私立 東京都市大学 2015年 第2問
次の問に答えよ.

(1)$a$を定数とする.放物線$y=ax^2$と曲線$y=\log x$がただ$1$つの共有点$\mathrm{P}$をもち,点$\mathrm{P}$で共通の接線をもつ.$a$の値と点$\mathrm{P}$の座標を求めよ.ただし,$\log$は自然対数とする.

(2)$a,\ b$を定数とし,$f(x)=ax^2+(b-a)x-b$とする.$\displaystyle \lim_{x \to 1} \frac{f(x)}{x-1}=1$,$f(2)=5$が成り立つとき,$a,\ b$の値を求めよ.

(3)定積分$\displaystyle \int_2^3 \frac{x^3-1}{x^2-1} \, dx$の値を求めよ.
東京都市大学 私立 東京都市大学 2015年 第3問
$p$を定数とする.数列$\{a_n\},\ \{b_n\}$が
\[ a_1=b_1=0,\quad a_{n+1}-a_n=p,\quad b_{n+1}-b_n=a_n \quad (n=1,\ 2,\ \cdots) \]
により定義されている.次の問に答えよ.

(1)$a_n$を$n$と$p$の式で表せ.
(2)$b_n$を$n$と$p$の式で表せ.

(3)$\displaystyle \sum_{n=3}^{11} \frac{1}{b_n}=1$となるような$p$の値を求めよ.
旭川大学 私立 旭川大学 2015年 第5問
二次関数$y=x^2-4x+1$について,次の設問に答えよ.

(1)二次関数の頂点の座標を求めよ.
(2)$1 \leqq x \leqq 4$において,二次関数の最大値と最小値を求めよ.
(3)二次関数と$x$軸との交点の$x$座標を求めよ.
(4)二次関数に直線$y=-2x+a$が接するとき,定数$a$の値を求めよ.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。