タグ「定数」の検索結果

24ページ目:全1257問中231問~240問を表示)
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$c$を定数とし,数列$\{a_n\}$を
\[ a_n=\frac{c+\sum_{k=1}^n 2^k}{2^n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.

(1)数列$\{a_n\}$は漸化式
\[ a_{n+1}=[$1$]+\frac{a_n}{[$2$]} \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.
(2)$a_n$を$n$の式で表すと
\[ a_n=2-\frac{[$3$]-c}{2^n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
となる.ゆえに,$c=[$4$]$のとき数列$\{a_n\}$は公比$1$の等比数列になる.
(3)$c=1$とする.$a_n$が$1.99$を超えない最大の$n$は$[$5$]$である.
(4)$c=-38$とする.自然数$N$に対して,$\displaystyle \sum_{n=1}^N a_n$の値は$N=[$6$]$のとき最小値$\displaystyle \frac{[$7$][$8$][$9$]}{[$10$]}$をとる.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
銀行口座(以降,口座)から$\mathrm{IC}$カードに金額を移転し,そのカードを用いて支払いをおこなうものとする.口座からカードに移転した金額を超過してさらに支払う必要が生じた場合,その分は銀行が自動的に立て替えて払うものとする.

このとき,口座からカードに金額を移転することに伴う利子収入の減少分,および銀行からの借入れに伴う利払い,そして口座からカードへの移転に伴う手数料,それらの合計$Z$を最小にする問題を考える.適当な仮定のもと,$Z$は独立変数$x,\ y$の関数として,つぎのように表わされる.
\[ Z=\frac{xy^2}{40A}+\frac{A^2-2xyA+x^2y^2}{30xA}+6x \]
ただし$(x,\ y)$は座標平面の第$1$象限の点であり,$A$は定数である.

(1)$x$を固定し,$Z$を$y$の関数と考えれば,その最小値は
\[ y=\frac{[$35$][$36$]}{[$37$][$38$]} \frac{A}{x} \]
のときである.
(2)$Z$に$(1)$の結果を代入し,$Z$を$x$のみの関数とみれば
\[ x=\sqrt{\frac{[$39$][$40$][$41$]}{[$42$][$43$][$44$]}A} \]
のとき$Z$は最小になる.
(3)以上から$Z$の最小値は
\[ \sqrt{\frac{[$45$][$46$][$47$]}{[$48$][$49$][$50$]}A} \]
である.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2015年 第2問
$2$次方程式$x^2+ax+a+4=0$の$2$つの解が整数となるように定数$a$の値を定めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2015年 第5問
$3$次関数$f(x)=2x^3+ax^2+bx+c$は$x=1$で極小値$f(1)=-6$をとり,かつ$f(-1)=14$である.このとき,定数$a,\ b,\ c$の値を求めよ.さらに,このグラフの概形を描け.
中央大学 私立 中央大学 2015年 第2問
実数の定数$a (a \neq 1)$,$b,\ c$に対し,多項式$f(x)=ax^3+2bx^2+6x+c$を考える.$f(x)$が$x=a$および$x=1$で極値を持つとき,以下の設問に答えよ.

(1)$a,\ b$の値をすべて求めよ.
(2)$f(x)$の極小値が$3a$であるとき,$c$の値を求めよ.
中央大学 私立 中央大学 2015年 第3問
曲線$C_1:y=x^3$を考える.点$\mathrm{A}(-1,\ -1)$における$C_1$の接線$\ell$は,$\mathrm{A}$とは異なる点$\mathrm{B}$で$C_1$と交わっている.このとき,以下の設問に答えよ.ただし
\[ \int x^3 \, dx=\frac{x^4}{4}+L \quad (L \text{は積分定数}) \]
である.

(1)点$\mathrm{B}$の座標を求めよ.
(2)実数の定数$a,\ b,\ c$に対し,曲線$C_2:y=ax^2+bx+c$を考える.$C_2$が点$\mathrm{A}$,$\mathrm{B}$を通り,さらに$\mathrm{A}$と$\mathrm{B}$との間の点$\mathrm{E}$($\mathrm{E} \neq \mathrm{A},\ \mathrm{E} \neq \mathrm{B}$)で$C_1$と交わるとき,$c$が満たす必要十分条件を求めよ.
(3)$C_2$および$\mathrm{E}$は前問と同様とし,$c$は前問の必要十分条件を満たしている.「$\mathrm{A}$,$\mathrm{E}$の間で曲線$C_1$と$C_2$とで囲まれる領域の面積」を$S_1$,「$\mathrm{E}$,$\mathrm{B}$の間で曲線$C_1$と$C_2$とで囲まれる領域の面積」を$S_2$とする.$S_1=S_2$であるとき,$c$の値を求めよ.
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)関数$f(x),\ g(x)$が次の$2$つの式を満たしている.ただし,$a$は定数とする.
\[ \left\{ \begin{array}{l}
\int_1^x f(t) \, dt=xg(x)-2ax+2 \phantom{\frac{[ ]}{[ ]}} \\
g(x)=x^2-x \int_0^1 f(t) \, dt-3 \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
このとき,$a=[ア]$であり,
\[ f(x)=[イ]x^2+[ウ]x+[エ] \]
である.
(2)$\displaystyle c(n)=\frac{3n^2+174n+231}{n^2+3n+2}$とおく.$c(n)$が整数となるような自然数$n$は$[オ]$個存在する.また,これら$[オ]$個の自然数のうちで最も大きいものを$n^{*}$と表すと,$n^{*}=[カ]$,$c(n^{*})=[キ]$である.
東京理科大学 私立 東京理科大学 2015年 第1問
次の文章の$[ア]$から$[ム]$までに当てはまる数字$0$~$9$を求めなさい.

(1)$c$を定数として,$3$次関数$f(x)$を
\[ f(x)=\frac{1}{3}x(x-1)(x-c) \]
と定める.$f(x)$の導関数$f^\prime(x)$は$\alpha,\ \beta (\alpha<\beta)$において
\[ f^\prime(\alpha)=0,\quad f^\prime(\beta)=0 \]
を満たすものとする.
解と係数の関係により,
\[ \alpha+\beta=\frac{[ア]}{[イ]}(c+1),\quad \alpha\beta=\frac{1}{[ウ]}c \]
である.したがって


$\displaystyle\frac{f(\alpha)-f(\beta)}{\alpha-\beta}=-\frac{[エ]}{[オ][カ]}(c^2-c+[キ])$

$\displaystyle (\alpha-\beta)^2=\frac{[ク]}{[ケ]}(c^2-c+1)$


となるので,$\displaystyle c=\frac{1}{2}$のとき
\[ f(\alpha)-f(\beta)=\frac{\sqrt{[コ]}}{[サ][シ]} \]
である.
(2)定数$\theta$に対して,数列$\{a_n\}$を
\[ a_n=\cos (2^{n-1}\theta) \quad (n=1,\ 2,\ 3,\ \cdots) \]
と定める.

(i) 余弦の$2$倍角の公式により,数列$\{a_n\}$は漸化式
\[ a_{n+1}=[ス] {a_n^2}-1 \]
を満たす.
(ii) $\theta$が$\displaystyle \cos \theta=\frac{1}{3}$を満たすとき
\[ a_3=\frac{[セ][ソ]}{[タ][チ]} \]
である.
(iii) $\displaystyle \theta=\frac{5}{96}\pi$とするとき
\[ a_{n+1}=a_n \]
を満たす最小の正の整数$n$は$[ツ]$である.

(3)大,中,小の$3$個のさいころを同時に投げるものとする.

(i) $1$の目が少なくとも$1$つ出る確率は$\displaystyle \frac{[テ][ト]}{[ナ][ニ][ヌ]}$である.
(ii) 出る目の最大値が$5$である確率は$\displaystyle \frac{[ネ][ノ]}{[ハ][ヒ][フ]}$である.
(iii) 大のさいころの目は中のさいころの目以上であり,かつ,小のさいころの目は中のさいころの目以下である確率は$\displaystyle \frac{[ヘ]}{[ホ][マ]}$である.
\mon[$\tokeishi$] 大と小のさいころの目の平均が中のさいころの目と等しい確率は$\displaystyle \frac{1}{[ミ][ム]}$である.
東京理科大学 私立 東京理科大学 2015年 第2問
$p$を正の定数として,関数$f(x)$を
\[ f(x)=-5x^p \log x \quad (x>0) \]
と定める.$a$は$f^\prime(a)=0$を満たす正の実数とする.ここで,$\log x$は自然対数であり,$e$は自然対数の底を表す.また,$f^\prime(x)$は$f(x)$の導関数である.

(1)$a$の値を$p$を用いて表せ.
(2)不定積分$\int f(x) \, dx$を求め$p$を用いて表せ.
(3)直線$x=a$と$x$軸,および曲線$y=f(x)$の$a \leqq x \leqq 1$の部分で囲まれる部分の面積を$S$とする.このとき,
\[ \lim_{p \to +0}S \]
の値を求めよ.必要ならば,$\displaystyle \lim_{u \to +0} \frac{e^{-\frac{1}{u}}}{u}=0$であることを用いてよい.
東京理科大学 私立 東京理科大学 2015年 第3問
正の定数$a (a \neq 1)$に対して,$2$次関数$f(x)$を
\[ f(x)=ax(1-x) \]
と定める.曲線$C:y=f(x)$の点$(1,\ 0)$における接線を$\ell_1$,直線$y=-x$を$\ell_2$とする.曲線$C$の$x \leqq 1$の部分と$2$直線$\ell_1$,$\ell_2$で囲まれる部分の面積を$S$で表し,また,この部分を$x$軸の周りに$1$回転してできる図形の体積を$V$で表す.

(1)直線$\ell_1,\ \ell_2$の交点の座標を$a$を用いて表せ.
(2)$S$を$a$を用いて表せ.
(3)定数$a$は$a>1$を満たすものとする.$2$直線$\ell_1$,$\ell_2$と$x$軸で囲まれる部分を$x$軸の周りに$1$回転してできる図形の体積を$U$で表すとき,
\[ \frac{30a^3}{(a-1)^4 \pi}(V-U) \]
を$a$の$1$次式で表せ.
(4)$\displaystyle \lim_{a \to 1+0}(a-1)^2V$の値を求めよ.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。